Monthly Archives: February 2014

How to solder like a pro

Manual soldering is a skill that gets better with practice. For those who are starting out for the first time, manual soldering can be risky, unless they take proper care and follow safety instructions. Manual soldering involves application of heat locally by a soldering iron, whose tip may reach temperatures as high as 400°C. Soldering materials are sometimes toxic, especially if using lead based solders. Some very useful information about soldering can be found here.

One of the best tips to follow for both starters and experienced people is to don safety glasses before starting to solder. This is something that should become a habit for everyone who is soldering, because hot solder entering the eye can be dangerous. A wire, bent the wrong way, can easily flick hot solder into the air. When cutting a component leg, the cut piece can travel at high speeds. Safety glasses will save the eyes from all these flying missiles.

For most people, soldering skills will not be very good at first, but will certainly improve over time. There is no magic in making perfect solder joints every time, you will simply get used to how to hold things, when the iron is hot enough and the feel for how long you need to apply the heat on.

One basic question that comes up often is whether people ought to use leaded solder or unleaded solder. Leaded solder is composed of Tin (Sn) and Lead (Pb), typically in the ration 60:40, with lead being added to bring down the melting point of the composition to about 180°C. However, Lead being unsuitable to human health, has led to creation of unleaded or lead-free solders. The composition of lead-free solder varies, but in general, these have a higher melting point, nearer to 240°C.

The lower melting point of leaded solder makes it easier for soldering work, and beginners find it easier to practice with. Unleaded solder also has a more corroding effect on the tip of the soldering iron, so you need to change the tip more frequently if you are doing a lot of soldering with unleaded solder. For fine electronics soldering, it is preferable to use a thin gauge of solder wire such as 0.7mm in diameter. Thicker solder is intended for heavier electrical work.

For solder to melt and flow easily, a chemical compound is used; this is called Flux. Usually, the solder wire has a hollow core, in which flux is filled. As you heat the solder wire, flux melts first and helps solder to melt and flow. However, melting flux releases fumes that although not harmful in small quantities, it is advisable to avoid breathing in.

Soldering should preferably be done in a large, well-ventilated room. If that is not possible, a fume extractor or even a fan should be used to draw the fumes away. The tip of the soldering iron should be kept clean and well wetted with solder. This keeps the tip in good condition for a longer time, preventing pitting. For cleaning the tip, use a wet sponge or some wire wool. Wire wool can be used to clean the surfaces to be soldered, resulting in faster and better-soldered joints.

A live translation project using Raspberry Pi

Up until now, wearable computing has been confined to some odd bulky wristwatches. Most people are probably aware of the Augmented Reality Glasses, commonly referred to as Google Glass that Google has been working on for quite a while. Google Glass is still in limited release and not available to everyone. So, in the meantime, you can use your Raspberry Pi (RBPi) to fill in the gap. The project has everything you desire – small in size, light in weight and light in power consumption; a cheap lithium-ion battery makes it run for hours.

The project has two RBPi Single Board Computers working as close as possible to the universal translator of the Star Trek fame. The two displays are a pair of digital glasses, quite off-the-shelf. Other standard equipment used are a Jawbone Bluetooth microphone and a Vuzix 1200 Star wearable display. When fully functional, the system uses Microsoft’s publicly accessible API or Applications Programming Interface to perform voice recognition and translation on the fly.

For example, Will Powell, the originator of the project, uses the glasses to have a conversation with Elizabeth, who speaks Spanish. Although Will has never learned Spanish, he is able to converse meaningfully returning the answers in English. Powell’s blog shows a video of the system in action and shows the details of the build.

This project glass inspired translating unit works in real time and displays conversation as subtitles on your glasses. Both RBPi run the Debian squeeze operating system. For using the system, individual users will be wearing the Vuzix 1200 Star glasses, and these are connected to the s-video connector on his RBPi. For a clean and noise cancelled audio feed, Will uses a Jawbone Bluetooth microphone connected to either a smartphone or a tablet.

The Bluetooth microphone picks up the speakers voice and streams it across the network to pass it through Microsoft’s translation API service. For regularly used statements, a caching layer improves the performance. The subtitles face their longest delay when passing through this API service, The RBPi picks up the translated text the server passes back and this is then displayed on the glasses display.

Once a person has spoken, it takes a few seconds of delay before the translation pops-up on the other persons glass display. Moreover, the translations are not always fluid or coherent. However, that has nothing to do with the technology used here; rather it is based on the inaccuracies of the translation API. It is really amazing as to how such a relatively simple setup could offer speech recognition and translation at very near real-time.

At this rate, Augmented Reality Glasses will become popular very soon, and Google has suggested they will make their Glass project commercial very soon. Mobile communication is standing on the brink of a revolutionary technology that Google’s Glass is sure to bring about. However, Powell’s work shows there is still a lot of room to experiment and explore different kinds of functions and applications in this field.

The project also shows that very soon it may not matter what language you speak, anyone will be able to understand you, provided everyone is wearing the right glasses.

Viewing experience redefined for industrial LED displays

LED displays have been on the rise as the latest method for promoting business in all fields. Primeview, US, has taken a big step in this direction through their ECO LINE LED displays. The most interesting part of this development is that it has brought about improvement in a number of features apart from providing all round viewing of 24×7 without a break. ECO LINE LED offers seamless viewing with a 55” super-narrow gap video wall display, with only 3.6 mm thickness from bezel to bezel. This is the slimmest LED display in the world and it is ecofriendly as well.

This display is known as the PRV55SNG indoor LED and it is an industrial display working all 24 hours round the clock and all through the year. The display has a 55” panel and sports the thinnest bezel with the left and top sides measuring 2.35mm and the right and bottom sides measuring 1.25mm in thickness. For realizing such a slim-sized bezel and simultaneously retaining the eco friendliness, the display design is such that it has very few components. The designers have reduced the heat load and at the same time, I/O connectivity access to the board has been improved.

The newly designed PRV55SNG indoor LED display has a number of features. Apart from offering a 500nit brightness panel, the 3.6mm bezel is seamless. It has AC power daisy chaining option and it can be used in either portrait or landscape mode. HDCP compliance is realized with the use of splitters though the PRV main board. The resolution is 1920×1080 FHD. The power consumption is greatly reduced due to the ecofriendly LED backlight. Primeview provides a reliable industrial metal enclosure. Optional HDBASET Rx + embedded Tx are also available for specific clients. This new LED display is being offered with the company’s 3-year warranty not only for the parts but also for the labor.

This product is available for use in almost all areas of business activities, but it can be said to be of more use in Healthcare, Industrial, Broadcast, Hospitality, Digital Signage, Retail business, Higher Education, Corporate, Gaming, and control rooms and many more. The highlight of the display is that it is Eco friendly, scalable and all those who view it will have a new and unbelievable experience. This is significant for the customers as support from Primeview is available for 3 years, which is unheard of in the industry.

This new display panel is being offered for public viewing in the month of April 2014 at the NAB broadcast show being held in Las Vegas. The company has also informed that all those prospective clients interested in private viewing, will have to contact them in advance either over phone or through the company’s website for the necessary arrangements. Significantly, this new development will be of importance as an LED displays in years to come and will be the prime tool for a number of display solutions. Primeval has taken the lead in this respect.

REX – a brain for robots

Not to be confused with Tyrannosaurus the king of beasts, REX is a complete development platform for sophisticated robotic applications. While most robotic designers use the Arduino platform as a base for their robots, Mike Lewis and Kartik Tiwari were not impressed with the available hardware. Their design, REX, is specifically targeted towards robots. REX poses no wiring hassles, has built-in battery inputs and has a robot programming environment that it boots up directly into.

The duo felt people who designed robots needed a new and more advanced platform. When using a single microcontroller for handling multiple sensors, motors and other electronics, problems start arising. The situation worsens as you plan on adding increasingly sophisticated tasks such as speech recognition and computer vision. The Arduino is, by default, not a multitasking platform and is intended for running a single task at a time. However, robotics essentially requires multiple tasks to be running at any given time.

Therefore, REX came up with a 32-bit ARM Cortex-A8 processor core running at 1GHz, an 800 MHz DSP core and 512 MB of RAM. The board runs on the Alphalem Operating System and boasts of a host of features such as built-in drivers for sensors and other similar devices, a task manager to allow launching multiple processes and support for several programming languages such as C, C++ and Python. The Arduino-style programming environment facilitates developing your own robot applications.

REX is a low-cost robot development platform that targets advanced robotics. Although simple robotics can be handled by the Arduino project and is fairly straightforward, REX is geared towards handling the extra functionality required where you need voice recognition and computer vision. Being simple and low-cost, the REX platform helps make more advanced robotics projects more accessible to the average hobby roboticist.

At the core of REX is the ADE or Alphalem Development Environment, consisting of scripts or programs written in C++, which form an Application Programming Interface for communicating with devices connected to REX using the I2C expansion ports. Apart from the built-in drivers that the Alphalem team selected for REX for driving sensors and actuators, the ADE also has a process management system for running multiple programs in parallel for efficient robot control. This, the team claims is the most useful features that REX offers to robotic designers.

Physically, REX is about the size of a standard pack of playing cards, small and compact. This palm-sized, single board computer is priced at $99 for its basic model, which includes the DSP, camera, microphone inputs and preloaded OS. You can use REX to control small simple robots easily.

However, this is not to mean that REX cannot handle complicated stuff. In fact, REX is extremely powerful and is able to handle a huge range of sensors such as speech recognition and machine vision. This allows it to be used for some very complicated robotic activities.

Incidentally, the name for the project was earlier AlphaOne, to commemorate Apple’s first PC. However, Mike, as the product engineer, proposed that the name should be changed to REX since he had a Jurassic Park mug on his desk.