Raspberry Pi and Laika

Raspberry Pi and Laika – A Powerful Combination for Robotics

Some of you may recall Laika, the first dog in space, and the first animal to orbit the Earth. In 1957, Laika gave up her life to prove that living beings can survive being launched into orbit.

This platform, aptly named the Laika Explorer, presents a powerful robotics control for your Raspberry Pi (Raspberry Pi). With Laika Explorer and using C, Python or Scratch programming, you can control switches, lamps, motors, robots and more from your Raspberry Pi.

The Laika Explorer is a simple platform, and you can start with the Scratch programming language for controlling the hardware in a matter of minutes. You only need to download the drivers, plug in the USB cable and you are ready to go, building up your hardware and software skills.

The Laika Explorer provides you with:

— Inputs to connect sensors, switches and other input devices – 2x analog and 4x digital;
— Outputs for controlling LEDs, motors, sounders and other output devices – 7x digital;
— Control for motors, drive forward, reverse and brake – 2x H-bridge motor drivers;
— Interaction between hardware and software – 4x switches;
— Diagnostics for digital outputs – 7x indicator LEDs

All the above are available on one PCB. You connect this PCB to your Raspberry Pi using a USB lead, and start the control by using one of the three programming languages – C, Python or Scratch. If you buy the Inventor’s kit, you get a laser cut, custom designed Perspex base to mount the Explorer board and the Raspberry Pi (the Pi is not included with the kit). Some motors, LEDs, potentiometers, wiring, etc., are thrown in. The USB connection will give you access to all the hardware control on the Laika Explorer board.

By sending a Scratch Broadcast, you transfer data to the Explorer board and to the seven digital outputs. Each output is capable of handling 500mA, although not at the same time. Each output is also protected by a back-emf diode, which means you can connect small motors, relays and solenoids, without having to worry about blasting the output driver transistors.

The dual h-bridge motor driver on the Explorer board is very useful in driving two motors individually. The two motors can be independently driven either in backwards, forwards or in braked condition. Both channels can each handle 1.5A continuously, or 3A if you want to drive one bigger motor with the outputs tied together.

The two analog inputs on the Explorer board provide 10-bit resolution. This makes it possible to use variable resistors or potentiometers to give precise control.

In practice, you do not need Scratch running on your Raspberry Pi to control the connected Laika Explorer. You can run a special Python script on your Raspberry Pi, allowing use of Scratch to communicate with the Laika Explorer over a network connection. Therefore, now you can control your Raspberry Pi robot through your Wi-Fi connection.

What does the future look like for Laika? Well, it is quite exciting as of now, with other modules in development. One such module is the multiple radio transceivers (868MHz for EU and 915MHz for US) forming a mesh network extension option, an exciting option for home automation to control lights, music and more through Raspberry Pi and Laika.