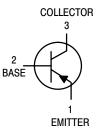


MAXIMUM RATINGS


Rating	Symbol	Value	Unit	
Collector-Emitter Voltage	V _{CEO}	-25	Vdc	
Collector-Emitter Voltage	V _{CES}	-25	Vdc	
Collector–Base Voltage	V _{CBO}	-25	Vdc	
Emitter-Base Voltage	V _{EBO}	-4.0	Vdc	
Collector Current — Continuous	۱ _C	-500	mAdc	
Total Device Dissipation @ T _A = 25°C Derate above 25°C	P _D	625 5.0	mW mW/°C	
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D 1.5 12		Watts mW/°C	
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C	

MPS3638A

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	$R_{\theta JA}^{(1)}$	200	°C/W
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector–Emitter Breakdown Voltage $(I_{C} = -100 \ \mu Adc, \ V_{BE} = 0)$	V _{(BR)CES}	-25	_	Vdc
Collector–Emitter Sustaining Voltage ⁽²⁾ ($I_C = -10 \text{ mAdc}, I_B = 0$)	V _{CEO(sus)}	-25	—	Vdc
Collector–Base Breakdown Voltage $(I_C = -100 \ \mu Adc, I_E = 0)$	V _(BR) CBO	-25	—	Vdc
Emitter–Base Breakdown Voltage $(I_E = -100 \ \mu Adc, I_C = 0)$	V _{(BR)EBO}	-4.0	—	Vdc
Collector Cutoff Current ($V_{CE} = -15 \text{ Vdc}, V_{BE} = 0$) ($V_{CE} = -15 \text{ Vdc}, V_{BE} = 0, T_A = -65^{\circ}C$)	I _{CES}		-0.035 -2.0	μAdc
Emitter Cutoff Current ($V_{EB} = -3.0 \text{ V}, I_C = 0$)	I _{EBO}	—	-35	nA
Base Current ($V_{CE} = -15 \text{ Vdc}, V_{BE} = 0$)	Ι _Β		-0.035	μAdc

1. R_{0JA} is measured with the device soldered into a typical printed circuit board. 2. Pulse Test: Pulse Width \leq 300 µs; Duty Cycle \leq 2.0%.

© Semiconductor Components Industries, LLC, 2001 March, 2001 – Rev. 1

	Symbol	Min	Max	Unit	
ON CHARACTERISTICS	2)				<u>.</u>
$\begin{array}{l} \text{DC Current Gain} \\ (I_{C} = -1.0 \text{ mAdc}, V_{CE} = -10 \\ (I_{C} = -10 \text{ mAdc}, V_{CE} = -10 \\ (I_{C} = -50 \text{ mAdc}, V_{CE} = -1.0 \\ (I_{C} = -300 \text{ mAdc}, V_{CE} = -2 \\ \end{array}$	h _{FE}	80 100 100 20	 	_	
Collector–Emitter Saturation Voltage ($I_C = -50 \text{ mAdc}$, $I_B = -2.5 \text{ mAdc}$) ($I_C = -300 \text{ mAdc}$, $I_B = -30 \text{ mAdc}$)				-0.25 -1.0	Vdc
Base–Emitter Saturation Volt ($I_C = -50 \text{ mAdc}, I_B = -2.5 \text{ r}$ ($I_C = -300 \text{ mAdc}, I_B = -30 \text{ mAdc}$	V _{BE(sat)}	 _0.80	-1.1 -2.0	Vdc	
SMALL-SIGNAL CHARA	CTERISTICS				
Current–Gain — Bandwidth F ($V_{CE} = -3.0 \text{ Vdc}, I_C = -50 \text{ J}$	fT	150	_	MHz	
Output Capacitance ($V_{CB} = -10 \text{ Vdc}, I_E = 0, f = 1.0 \text{ MHz}$)		C _{obo}	_	10	pF
Input Capacitance ($V_{EB} = -0.5 \text{ Vdc}, I_C = 0, f =$	C _{ibo}	_	25	pF	
Input Impedance (I _C = -10 mAdc, V _{CE} = -10 Vdc, f = 1.0 kHz)		h _{ie}	_	2000	kΩ
Voltage Feedback Ratio ($I_C = -10$ mAdc, $V_{CE} = -10$	h _{re}	_	15	X 10 ⁻⁴	
Small–Signal Current Gain ($I_C = -10$ mAdc, $V_{CE} = -10$ Vdc, f = 1.0 kHz)		h _{fe}	100	_	-
Output Admittance ($I_C = -10$ mAdc, $V_{CE} = -10$	h _{oe}	_	1.2	mmhos	
SWITCHING CHARACTEI	RISTICS	·			·
Delay Time	-10/do $1 - 200$ m/do $1 - 20$ m/do)	t _d	—	20	ns
Rise Time (V _{CC} -	= –10 Vdc, I _C = –300 mAdc, I _{B1} = –30 mAdc)	tr		70	ns
(55	= –10 Vdc, I _C = –300 mAdc,	t _s		140	ns
Fall Time $I_{B1} = -30 \text{ mAdc}, I_{B2} = -30 \text{ mAdc})$		t _f	—	70	ns

75

170

ns

ns

t_{on}

t_{off}

2. Pulse Test: Pulse Width \leq 300 $\mu s;$ Duty Cycle \leq 2.0%.

Turn–On Time

Turn–Off Time

 $(I_C = -300 \text{ mAdc}, I_{B1} = -30 \text{ mAdc})$

(I_C = -300 mAdc, I_{B1} = -30 mAdc, I_{B2} = 30 mAdc)

SWITCHING TIME EQUIVALENT TEST CIRCUIT

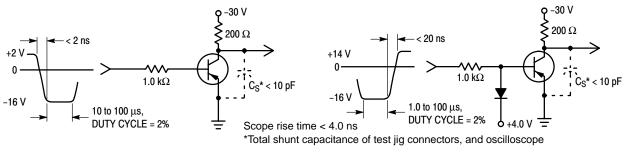


Figure 1. Turn–On Time

Figure 2. Turn–Off Time

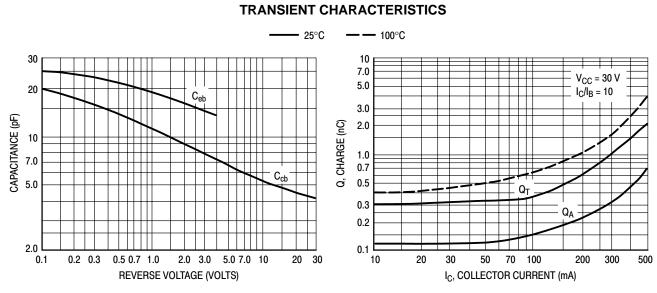
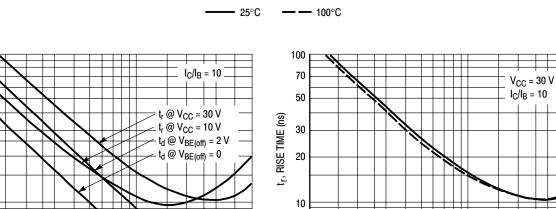



Figure 3. Capacitances

Figure 4. Charge Data

TRANSIENT CHARACTERISTICS (Continued)

I_C, COLLECTOR CURRENT (mA) Figure 5. Turn–On Time

70 100

200

300

500

100

70

50

30

20

10

7.0

5.0

10

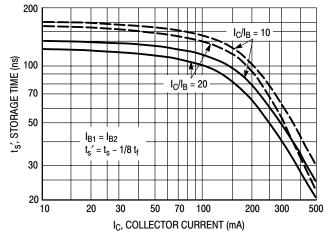
20

30

50

t, TIME (ns)

I_C, COLLECTOR CURRENT (mA) Figure 6. Rise Time


70 100

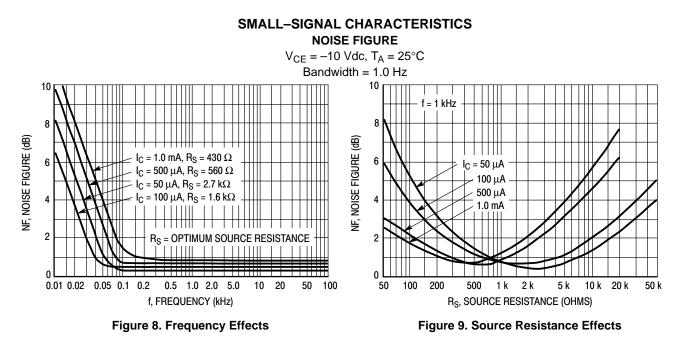
200

300

500

50

7.0

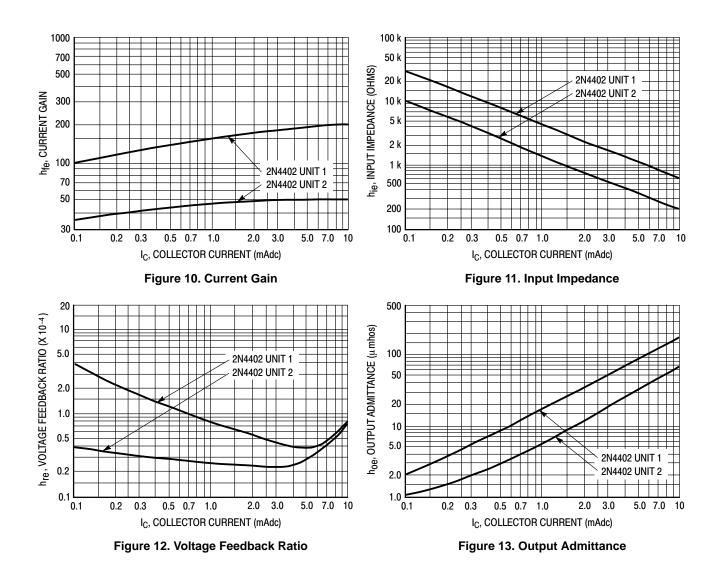

5.0

10

20

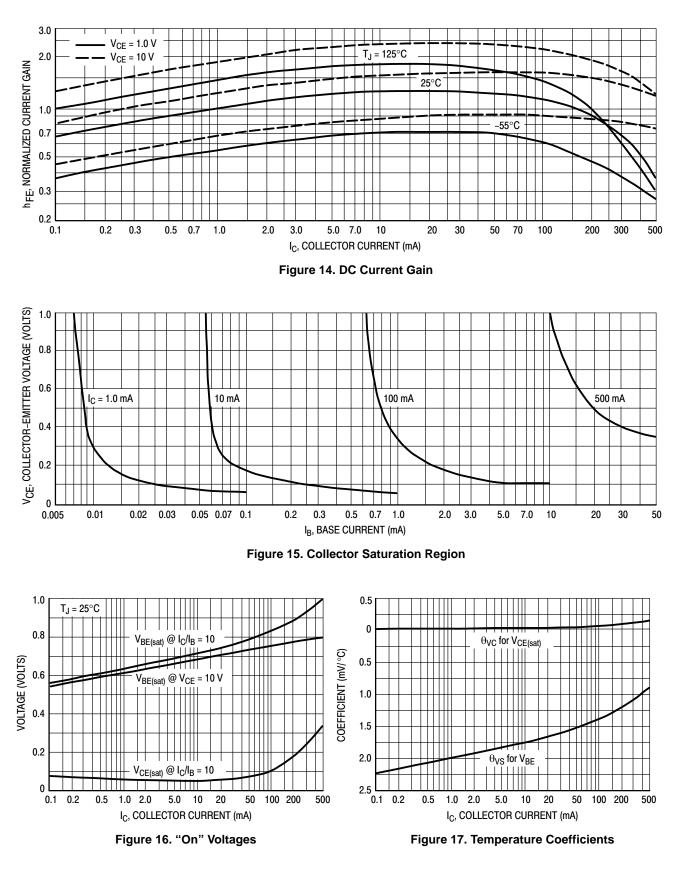
30

Figure 7. Storage Time

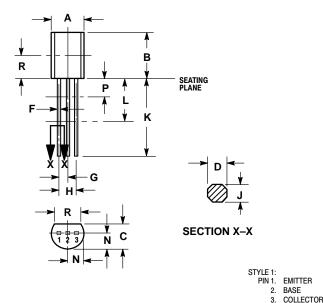


h PARAMETERS

$V_{CE} = -10$ Vdc, f = 1.0 kHz, T_A = 25°C


This group of graphs illustrates the relationship between h_{fe} and other "h" parameters for this series of transistors. To obtain these curves, a high–gain and a low–gain unit were

selected from the 2N4402 line, and the same units were used to develop the correspondingly–numbered curves on each graph.


http://onsemi.com 6

STATIC CHARACTERISTICS

PACKAGE DIMENSIONS

CASE 029-11 (TO-226AA) **ISSUE AD**

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI

 V14.5M, 1982.
CONTROLLING DIMENSION: INCH.
CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED. 4. DIMENSION F APPLIES BETWEEN P AND L.

DIMENSIONS D AND J APPLY BETWEEN L AND K MIMIMUM. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.175	0.205	4.44	5.21
В	0.290	0.310	7.37	7.87
С	0.125	0.165	3.18	4.19
D	0.018	0.021	0.457	0.533
F	0.016	0.019	0.407	0.482
G	0.045	0.055	1.15	1.39
Н	0.095	0.105	2.42	2.66
J	0.018	0.024	0.46	0.61
K	0.500		12.70	
L	0.250		6.35	
N	0.080	0.105	2.04	2.66
Р		0.100		2.54
R	0.135		3.43	

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes ON Semiconductor and a retrademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: ONlit@hibbertco.com Fax Response Line: 303-675-2167 or 800-344-3810 Toll Free USA/Canada

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor - European Support

- German Phone: (+1) 303-308-7140 (Mon-Fri 2:30pm to 7:00pm CET) Email: ONlit-german@hibbertco.com Phone: (+1) 303-308-7141 (Mon-Fri 2:00pm to 7:00pm CET)
- French Email: ONlit-french@hibbertco.com
- English Phone: (+1) 303-308-7142 (Mon-Fri 12:00pm to 5:00pm GMT) Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781 *Available from Germany, France, Italy, UK, Ireland

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303-308-7143 (Mon-Fri 8:00am to 5:00pm MST) Email: ONlit-spanish@hibbertco.com Toll-Free from Mexico: Dial 01-800-288-2872 for Access -

then Dial 866-297-9322

ASIA/PACIFIC: LDC for ON Semiconductor - Asia Support Phone: 303-675-2121 (Tue-Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong & Singapore: 001-800-4422-3781 Email: ONlit-asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-0031 Phone: 81-3-5740-2700 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.