MC7800, MC7800A, MC7800AE, NCV7800

1.0 A Positive Voltage Regulators

These voltage regulators are monolithic integrated circuits designed as fixed-voltage regulators for a wide variety of applications including local, on-card regulation. These regulators employ internal current limiting, thermal shutdown, and safe-area compensation. With adequate heatsinking they can deliver output currents in excess of 1.0 A. Although designed primarily as a fixed voltage regulator, these devices can be used with external components to obtain adjustable voltages and currents.

Features

- Output Current in Excess of 1.0 A
- No External Components Required
- Internal Thermal Overload Protection
- Internal Short Circuit Current Limiting
- Output Transistor Safe-Area Compensation
- Output Voltage Offered in 1.5%, 2% and 4% Tolerance
- Available in Surface Mount D²PAK-3, DPAK-3 and Standard 3-Lead Transistor Packages
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- Pb-Free Packages are Available

MAXIMUM RATINGS (T_A = 25°C, unless otherwise noted)

		Value			Unit
Rating	Symbol	369C	221A	936	
Input Voltage (5.0 – 18 V) (24 V)	VI	35 40			Vdc
Power Dissipation	P_{D}	Internally Limited			W
Thermal Resistance, Junction-to-Ambient	$R_{ heta JA}$	92	65	Figure 15	°C/W
Thermal Resistance, Junction-to-Case	$R_{ heta JC}$	5.0	5.0	5.0	°C/W
Storage Junction Temperature Range	T _{stg}	-65 to +150			°C
Operating Junction Temperature	T_J	+150			°C

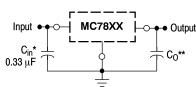
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

ON Semiconductor®

http://onsemi.com

TO-220 T SUFFIX CASE 221AB

Heatsink surface connected to Pin 2.


Pin 1. Input 2. Ground 3. Output D²PAK-3 D2T SUFFIX CASE 936

Heatsink surface (shown as terminal 4 in case outline drawing) is connected to Pin 2.

DPAK-3 DT SUFFIX CASE 369C

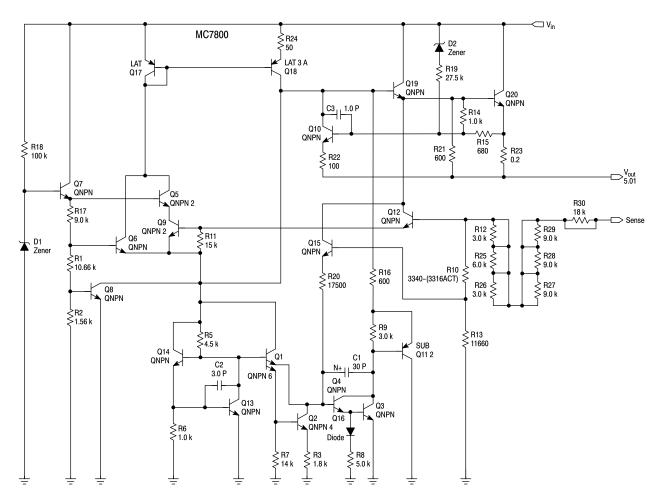
STANDARD APPLICATION

A common ground is required between the input and the output voltages. The input voltage must remain typically 2.0 V above the output voltage even during the low point on the input ripple voltage.

- XX, These two digits of the type number indicate nominal voltage.
 - * C_{in} is required if regulator is located an appreciable distance from power supply filter
 - ** C_O is not needed for stability; however, it does improve transient response. Values of less than 0.1 μF could cause instability.

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 23 of this data sheet.


DEVICE MARKING INFORMATION

See general marking information in the device marking section on page 31 of this data sheet.

^{*}This device series contains ESD protection and exceeds the following tests: Human Body Model 2000 V per MIL_STD_883, Method 3015.

Machine Model Method 200 V.

MC7800, MC7800A, MC7800AE, NCV7800

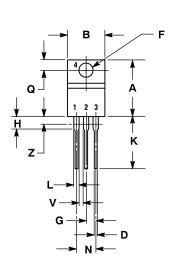
This device contains 22 active transistors.

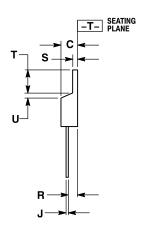
Figure 1. Representative Schematic Diagram

MC7800, MC7800A, MC7800AE, NCV7800

ELECTRICAL CHARACTERISTICS (V_{in} = 19 V, I_{O} = 500 mA, T_{J} = T_{low} to 125°C (Note 17), unless otherwise noted)

		MC7812B/NCV7812B		MC7812C				
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Output Voltage (T _J = 25°C)	Vo	11.5	12	12.5	11.5	12	12.5	Vdc
Output Voltage (5.0 mA \leq I _O \leq 1.0 A, P _D \leq 15 W)	Vo							Vdc
14.5 $Vdc \le V_{in} \le 27 Vdc$		_	_	_	11.4	12	12.6	
15.5 $Vdc \le V_{in} \le 27 Vdc$		11.4	12	12.6	_	-	_	
Line Regulation, T _J = 25°C (Note 18)	Reg _{line}							mV
14.5 $Vdc \le V_{in} \le 30 \ Vdc$		_	7.5	240	_	3.8	24	
16 Vdc ≤ V _{in} ≤ 22 Vdc		_	2.2	120	_	0.3	24	
14.8 $Vdc \le V_{in} \le 27 Vdc$, $I_O = 1.0 A$		_	-	_	_	-	48	
Load Regulation, T _J = 25°C (Note 18)	Reg _{load}	-	1.6	240	-	8.1	60	mV
$5.0 \text{ mA} \le I_0 \le 1.5 \text{ A}$								
Quiescent Current	Ι _Β	-	3.4	8.0	_	3.4	6.5	mA
Quiescent Current Change	Δl_{B}							mA
14.5 Vdc \leq V $_{in}$ \leq 30 Vdc, I $_{O}$ = 1.0 A, T $_{J}$ = 25 $^{\circ}$ C		_	_	_	_	-	0.7	
15 Vdc ≤ V _{in} ≤ 30 Vdc		_	-	1.0	_	-	0.8	
$5.0 \text{ mA} \le I_{O} \le 1.0 \text{ A}$		_	_	0.5	_	-	0.5	
Ripple Rejection	RR	-	60	_	55	60	_	dB
15 $Vdc \le V_{in} \le 25 Vdc$, $f = 120 Hz$								
Dropout Voltage (I _O = 1.0 A, T _J = 25°C)	V _I – V _O	-	2.0	_	-	2.0	_	Vdc
Output Noise Voltage (T _A = 25°C)	V _n	-	10	_	_	10	_	μV/V _O
10 Hz ≤ f ≤ 100 kHz								
Output Resistance f = 1.0 kHz	r _O	-	1.1	_	_	1.1	-	mΩ
Short Circuit Current Limit (T _A = 25°C)	I _{SC}	-	0.2	_	-	0.2	-	Α
V _{in} = 35 Vdc								
Peak Output Current (T _J = 25°C)	I _{max}	-	2.2	_	-	2.2	-	Α
Average Temperature Coefficient of Output Voltage	TCV _O	_	-0.8	_	_	-0.8	_	mV/°C


^{17.} T_{low} = 0°C for MC78XXC, MC78XXAC, = -40°C for NCV78XX, MC78XXB, MC78XXAB, and MC78XXAEB 18. Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.


MC7800, MC7800A, MC7800AE, NCV7800

PACKAGE DIMENSIONS

TO-220, SINGLE GAUGE

CASE 221AB **ISSUE A**

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCHES.
 3. DIMENSION Z DEFINES A Z DONE WHERE ALL BODY AND LEAD INREGULARITIES ARE ALLOWED.
 4. PRODUCT SHIPPED PRIOR TO 2008 HAD DIMENSIONS S = 0.045 0.055 INCHES (1.143 1.397 MM)

	INC	HES	MILLIMETERS			
DIM	MIN	MAX	MIN	MAX		
Α	0.570	0.620	14.48	15.75		
В	0.380	0.405	9.66	10.28		
С	0.160	0.190	4.07	4.82		
D	0.025	0.035	0.64	0.88		
F	0.142	0.147	3.61	3.73		
G	0.095	0.105	2.42	2.66		
Н	0.110	0.155	2.80	3.93		
J	0.018	0.025	0.46	0.64		
K	0.500	0.562	12.70	14.27		
L	0.045	0.060	1.15	1.52		
N	0.190	0.210	4.83	5.33		
Q	0.100	0.120	2.54	3.04		
R	0.080	0.110	2.04	2.79		
S	0.020	0.024	0.508	0.61		
Т	0.235	0.255	5.97	6.47		
U	0.000	0.050	0.00	1.27		
٧	0.045		1.15			
Z		0.080		2.04		