

QTLP670C-2 HER QTLP670C-7 AlGaAs Red QTLP670C-3 Yellow QTLP670C-B Blue QTLP670C-4 Green QTLP670C-W White

APPLICATIONS

- Automotive interior lighting
- Status indication for consumer electronics and office equipment

DESCRIPTION

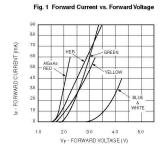
These surface mount LEDs are designed with flat top and sides for the ease of pick-and-place by automatic placement equipment. They are compatible with convective IR and vapor phase reflow soldering. The package size and configuration conform to EIA-535 BAAC standard specification for case size 3528 tantalum capacitor. These LEDs are ideal for backlighting and optical coupling into light pipes.

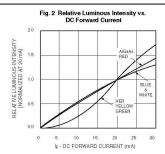
FEATURES

- · GaN/SIC technology for -B and -W
- Wide viewing angle of 120°
- · Water clear optics
- · Moisture-proof packaging
- Available in 0.315" (8mm) width tape on 7" (178mm) diameter reel; 2,000 units per reel

QTLP670C-2 HER QTLP670C-7 AlGaAs Red QTLP670C-3 Yellow QTLP670C-B Blue QTLP670C-4 Green QTLP670C-W White

ABSOLUTE MAXIMUM RATINGS (T _A =25°C Unless otherwise specified)										
Parameter	Symbol	QTLP670C								
		-2	-3	-4	-7	-В	-W	Units		
Continuous Forward Current	J _E	30	30	30	30	30	30	mA		
Peak Forward Current (f = 1.0 KHz, Duty Factor = 1/10)	I _{FM}	160	160	160	180	100	100	mA		
Reverse Voltage (I _R = 10 µA)	V _R	5	5	5	5	5	5	٧		
Power Dissipation	PD	84	84	84	72	135	135	mW		
Operating Temperature	T _{OPR}	-40 to +85						°C		
Storage Temperature	T _{STG}	-40 to +90						°C		
Lead Soldering Time	T _{SOL}	260 for 5 sec								


ELECTRICAL / OPTICAL CHARACTERISTICS (T _A =25°C)											
Part Number	Symbol		O a malifel a m								
		-2	-3	-4	-7	-В	-w	Condition			
Luminous Intensity (mcd)											
Minimum	Ĩ.co	5	5	15	25	20	20	I _F = 20mA			
Typical	lv	10	10	25	40	30	30				
Forward Voltage (V)											
Maximum	M	2.8	2.8	2.8	2.4	4.5	4.5	I _F = 20mA			
Typical	V _F	2.0	2.0	2.1	1.9	3.8	3.8				
Wavelength (nm)											
Peak	λ_{P}	635	585	565	660	430	_	l _F = 20mA			
Dominant	λ_{D}	630	590	570	645	465	-				
Chromatic Coordinate	х,у	_	_	1	_		x = 0.26 y = 0.28	I _F = 20mA			
Spectral Line Half Width (nm)	Δλ	45	35	30	20	65	-	I _F = 20mA			
Viewing Angle (°)	2O _{1/2}	120	120	120	120	120	120	I _F = 20mA			



QTLP670C-2 HER QTLP670C-7 AlGaAs Red QTLP670C-3 Yellow QTLP670C-B Blue

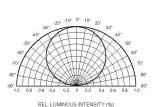
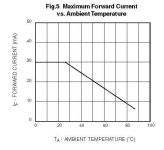
QTLP670C-4 Green QTLP670C-W White

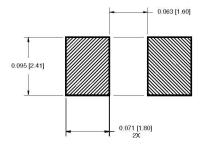
TYPICAL PERFORMANCE CURVES

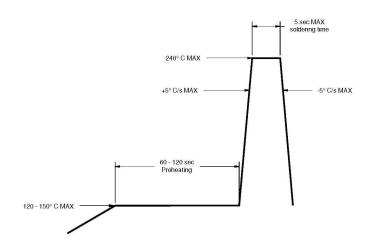
WHITE GREEN AIGaAs RED RELATIVE INTENSITY 0.5

Fig. 3 Relative Intensity vs. Peak Wavelength

450 BLUE 300 WAVELENGTH (nm)

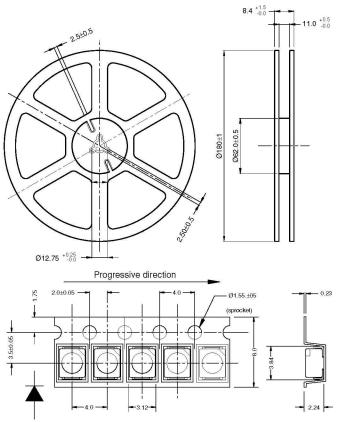

Fig.4 Radiation Diagram



QTLP670C-2 HER QTLP670C-3 Yellow QTLP670C-4 Green QTLP670C-7 AlGaAs Red QTLP670C-B Blue QTLP670C-W White

RECOMMENDED PRINTED CIRCUIT BOARD PATTERN

RECOMMENDED IR REFLOW SOLDERING PROFILE



QTLP670C-2 HER
QTLP670C-7 AlGaAs Red

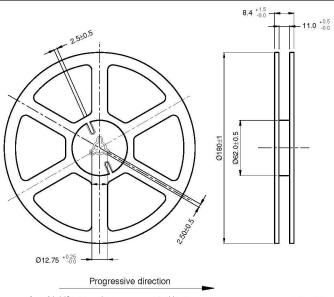
QTLP670C-3 Yellow QTLP670C-B Blue QTLP670C-4 Green QTLP670C-W White

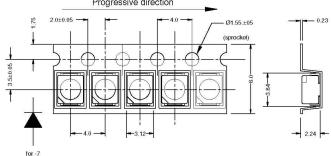
TAPE AND REEL DIMENSIONS

tor -2, -3, -4, -9, -B and -W

Polarity Dimensional tolerance is \pm 0.1mm unless otherwise specified Angle: \pm 0.5

Unit: mm


Polarity marks are on the sprocket side.



QTLP670C-2 HER
QTLP670C-7 AlGaAs Red

QTLP670C-3 Yellow QTLP670C-B Blue QTLP670C-4 Green QTLP670C-W White

TAPE AND REEL DIMENSIONS

Polarity

Dimensional tolerance is $\pm\,0.1\,\mathrm{mm}$ unless otherwise specified

Angle: ± 0.5 Unit: mm

Polarity marks are on the opposite sprocket side.

QTLP670C-2 HER QTLP670C-3 Yellow QTLP670C-4 Green QTLP670C-7 AlGaAs Red QTLP670C-B Blue QTLP670C-W White

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS. NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.