Am29LV800B

Data Sheet

RETIRED PRODUCT

This product has been retired and is not recommended for designs. For new and current designs, S29AL008D supersedes Am29LV800B and is the factory-recommended migration path. Please refer to the S29AL008D datasheet for specifications and ordering information. Availability of this document is retained for reference and historical purposes only.

July 2003

The following document specifies Spansion memory products that are now offered by both Advanced Micro Devices and Fujitsu. Although the document is marked with the name of the company that originally developed the specification, these products will be offered to customers of both AMD and Fujitsu.

Continuity of Specifications

There is no change to this datasheet as a result of offering the device as a Spansion product. Any changes that have been made are the result of normal datasheet improvement and are noted in the document revision summary, where supported. Future routine revisions will occur when appropriate, and changes will be noted in a revision summary.

For More Information

Please contact your local AMD or Fujitsu sales office for additional information about Spansion memory solutions.

Am29LV800B

8 Megabit (1 M x 8-Bit/512 K x 16-Bit) CMOS 3.0 Volt-only Boot Sector Flash Memory

This product has been retired and is not recommended for designs. For new and current designs, S29AL008D supersedes Am29LV800B and is the factory-recommended migration path. Please refer to the S29AL008D datasheet for specifications and ordering information. Availability of this document is retained for reference and historical purposes only.

DISTINCTIVE CHARACTERISTICS

Single power supply operation

 2.7 to 3.6 volt read and write operations for battery-powered applications

Manufactured on 0.32 µm process technology

Compatible with 0.5 µm Am29LV800 device

High performance

- Access times as fast as 70 ns

Ultra low power consumption (typical values at 5 MHz)

- 200 nA Automatic Sleep mode current
- 200 nA standby mode current
- 7 mA read current
- 15 mA program/e+5rase current

Flexible sector architecture

- One 16 Kbyte, two 8 Kbyte, one 32 Kbyte, and fifteen 64 Kbyte sectors (byte mode)
- One 8 Kword, two 4 Kword, one 16 Kword, and fifteen 32 Kword sectors (word mode)
- Supports full chip erase
- Sector Protection features:

A hardware method of locking a sector to prevent any program or erase operations within that sector Sectors can be locked in-system or via programming equipment

Temporary Sector Unprotect feature allows code changes in previously locked sectors

• Unlock Bypass Program Command

- Reduces overall programming time when issuing multiple program command sequences
- Top or bottom boot block configurations available

• Embedded Algorithms

- Embedded Erase algorithm automatically preprograms and erases the entire chip or any combination of designated sectors
- Embedded Program algorithm automatically writes and verifies data at specified addresses

• Minimum 1 million write cycle guarantee per sector

• 20-year data retention at 125°C

Reliable operation for the life of the system

Package option

- 48-ball FBGA
- 48-pin TSOP
- 44-pin SO
- Known Good Die (KGD) (see publication number 21536)

Compatibility with JEDEC standards

- Pinout and software compatible with singlepower supply Flash
- Superior inadvertent write protection

Data# Polling and toggle bits

 Provides a software method of detecting program or erase operation completion

Ready/Busy# pin (RY/BY#)

Provides a hardware method of detecting program or erase cycle completion

• Erase Suspend/Erase Resume

 Suspends an erase operation to read data from, or program data to, a sector that is not being erased, then resumes the erase operation

Hardware reset pin (RESET#)

Hardware method to reset the device to reading array data

GENERAL DESCRIPTION

The Am29LV800B is an 8 Mbit, 3.0 volt-only Flash memory organized as 1,048,576 bytes or 524,288 words. The device is offered in 48-ball FBGA, 44-pin SO, and 48-pin TSOP packages. The device is also available in Known Good Die (KGD) form. For more information, refer to publication number 21536. The word-wide data (x16) appears on DQ15–DQ0; the byte-wide (x8) data appears on DQ7–DQ0. This device requires only a single, 3.0 volt V_{CC} supply to perform read, program, and erase operations. A standard EPROM programmer can also be used to program and erase the device.

This device is manufactured using AMD's $0.32~\mu m$ process technology, and offers all the features and benefits of the Am29LV800, which was manufactured using $0.5~\mu m$ process technology. In addition, the Am29LV800B features unlock bypass programming and in-system sector protection/unprotection.

The standard device offers access times of 70, 90, and 120 ns, allowing high speed microprocessors to operate without wait states. To eliminate bus contention the device has separate chip enable (CE#), write enable (WE#) and output enable (OE#) controls.

The device requires only a **single 3.0 volt power supply** for both read and write functions. Internally generated and regulated voltages are provided for the program and erase operations.

The device is entirely command set compatible with the JEDEC single-power-supply Flash standard. Commands are written to the command register using standard microprocessor write timings. Register contents serve as input to an internal statemachine that controls the erase and programming circuitry. Write cycles also internally latch addresses and data needed for the programming and erase operations. Reading data out of the device is similar to reading from other Flash or EPROM devices.

Device programming occurs by executing the program command sequence. This initiates the **Embedded Program** algorithm—an internal algorithm that automatically times the program pulse widths and verifies proper cell margin. The **Unlock Bypass** mode facilitates faster programming times by requiring only two write cycles to program data instead of four.

Device erasure occurs by executing the erase command sequence. This initiates the **Embedded Erase** algorithm—an internal algorithm that auto-

matically preprograms the array (if it is not already programmed) before executing the erase operation. During erase, the device automatically times the erase pulse widths and verifies proper cell margin.

The host system can detect whether a program or erase operation is complete by observing the RY/BY# pin, or by reading the DQ7 (Data# Polling) and DQ6 (toggle) **status bits**. After a program or erase cycle has been completed, the device is ready to read array data or accept another command.

The **sector erase architecture** allows memory sectors to be erased and reprogrammed without affecting the data contents of other sectors. The device is fully erased when shipped from the factory.

Hardware data protection measures include a low V_{CC} detector that automatically inhibits write operations during power transitions. The **hardware sector protection** feature disables both program and erase operations in any combination of the sectors of memory. This can be achieved in-system or via programming equipment.

The **Erase Suspend** feature enables the user to put erase on hold for any period of time to read data from, or program data to, any sector that is not selected for erasure. True background erase can thus be achieved.

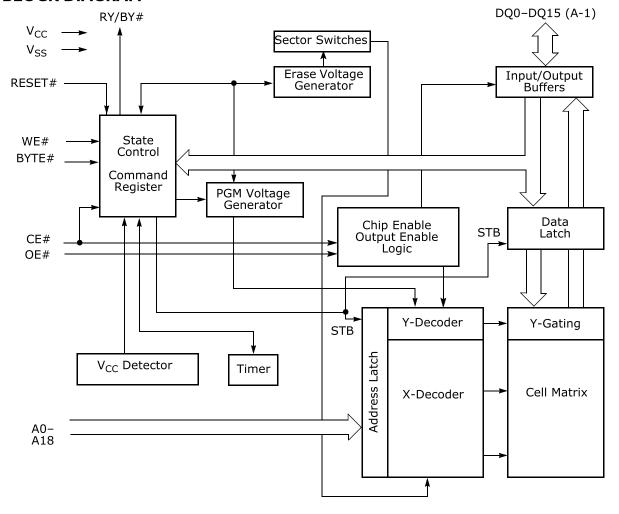
The **hardware RESET# pin** terminates any operation in progress and resets the internal state machine to reading array data. The RESET# pin may be tied to the system reset circuitry. A system reset would thus also reset the device, enabling the system microprocessor to read the boot-up firmware from the Flash memory.

The device offers two power-saving features. When addresses have been stable for a specified amount of time, the device enters the **automatic sleep mode**. The system can also place the device into the **standby mode**. Power consumption is greatly reduced in both these modes.

AMD's Flash technology combines years of Flash memory manufacturing experience to produce the highest levels of quality, reliability and cost effectiveness. The device electrically erases all bits within a sector simultaneously via Fowler-Nordheim tunneling. The data is programmed using hot electron injection.

TABLE OF CONTENTS

Product Selector Guide	
Block Diagram	
Connection Diagrams	
Special Handling Instructions for FBGA Package .	
Pin Configuration	
Logic Symbol	
Ordering Information	
Standard Products	
Device Bus Operations	11
Table 1. Am29LV800B Device Bus Operations	11
Word/Byte Configuration	
Requirements for Reading Array Data	11
Writing Commands/Command Sequences	11
Program and Erase Operation Status	
Standby Mode	
Automatic Sleep Mode	
RESET#: Hardware Reset Pin	
Output Disable Mode	12
Table 2. Am29LV800BT Top Boot Block	
Sector Addresses	13
Table 3. Am29LV800BB Bottom Boot Block	
Sector Addresses	
Autoselect Mode	14
Table 4. Am29LV800B Autoselect Codes	
(High Voltage Method)	14
Temporary Sector Unprotect	
Figure 1. Temporary Sector Unprotect Operation	
Figure 2. In-System Sector Protect/	1
Sector Unprotect Algorithms	16
Hardware Data Protection	
Command Definitions	
Reading Array Data	
Reset Command	
Autoselect Command Sequence	
Word/Byte Program Command Sequence	
Figure 3. Program Operation	18
Chip Erase Command Sequence	19
Sector Erase Command Sequence	
Erase Suspend/Erase Resume Commands	
Figure 4. Erase Operation	
Table 1. Am29LV800B Command Definitions	2
Write Operation Status	
DQ7: Data# Polling	
Figure 5. Data# Polling Algorithm	
RY/BY#: Ready/Busy#	
DQ6: Toggle Bit I	
DQ2: Toggle Bit II	
Reading Toggle Bits DQ6/DQ2	
DQ5: Exceeded Timing Limits	23
Figure 6. Toggle Bit Algorithm	

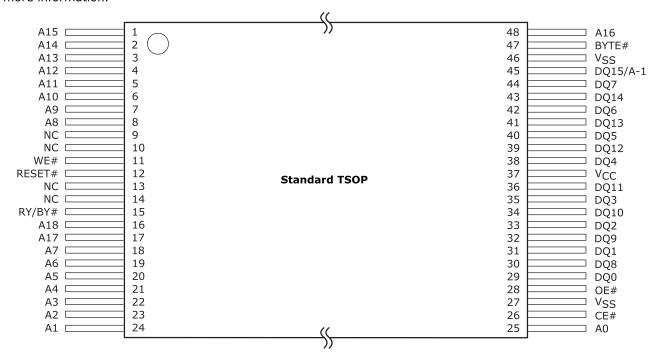

DQ3: Sector Erase Timer	. 24
Table 2. Write Operation Status	25
Absolute Maximum Ratings	26
Operating Ranges	
DC Characteristics	
CMOS Compatible	
Figure 9. I _{CC1} Current vs. Time (Showing Active and	. 21
Automatic Sleep Currents)	28
Figure 10. Typical I _{CC1} vs. Frequency	
Test Conditions	
Figure 11. Test Setup	
Table 3. Test Specifications	
Key to Switching Waveforms	
Figure 12. Input Waveforms and	23
Measurement Levels	20
AC Characteristics	
Read Operations	
Figure 13. Read Operations Timings	
Hardware Reset (RESET#)	
Figure 14. RESET# Timings	
Word/Byte Configuration (BYTE#)	
Figure 15. BYTE# Timings for Read Operations	
Figure 16. BYTE# Timings for Write Operations	
Erase/Program Operations	
Figure 17. Program Operation Timings	
Figure 18. Chip/Sector Erase Operation Timings	. 35
Figure 19. Data# Polling Timings (During	
Embedded Algorithms)	. 36
Figure 20. Toggle Bit Timings (During	
Embedded Algorithms)	
Figure 21. DQ2 vs. DQ6	
Temporary Sector Unprotect	. 37
Figure 22. Temporary Sector Unprotect	
Timing Diagram	. 37
Figure 23. Sector Protect/Unprotect	
Timing Diagram	
Alternate CE# Controlled Erase/Program Operation	าทร
39	
Figure 24. Alternate CE# Controlled Write	
Operation Timings	
Erase and Programming Performance	
Latchup Characteristics	41
TSOP and SO Pin Capacitance	41
Data Retention	41
Physical Dimensions*	
TS 048—48-Pin Standard TSOP	42
TSR048—48-Pin Reverse TSOP	
FBB 048—48-Ball Fine-Pitch Ball Grid Array	
(FBGA) 6 x 9 mm	11
SO 044—44-Pin Small Outline Package	
Revision Summary	41

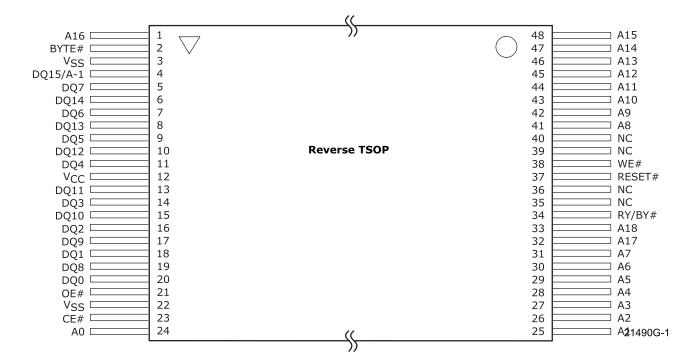
PRODUCT SELECTOR GUIDE

Family Part Number		Am29LV800B		
Speed Options	Full Voltage Range: $V_{CC} = 2.7-3.6 \text{ V}$	-70	-90	-120
Max access time, ns (t _{ACC})		70	90	120
Max CE# access time, ns (t _{CE})		70	90	120
Max OE# access time, ns (t _{OE})		30	35	50

Note: See "AC Characteristics" for full specifications.

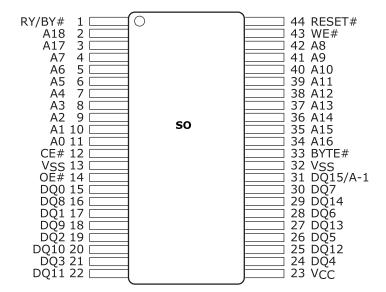
BLOCK DIAGRAM

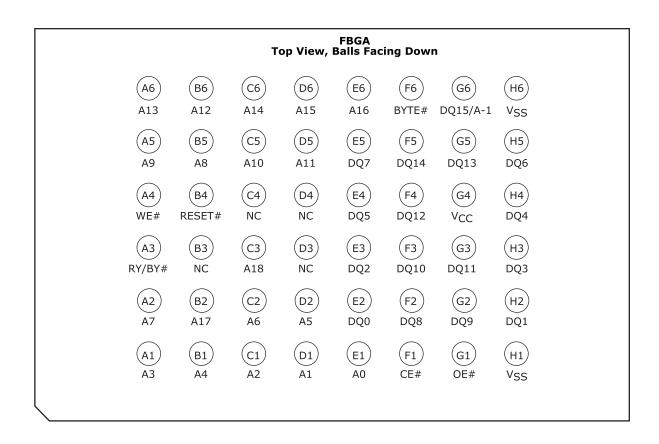



Am29LV800B

6

CONNECTION DIAGRAMS


This device is also available in Known Good Die (KGD) form. Refer to publication number 21536 for more information.



CONNECTION DIAGRAMS

This device is also available in Known Good Die (KGD) form. Refer to publication number 21536 for more information.

8 Am29LV800B

Special Handling Instructions for FBGA Package

Special handling is required for Flash Memory products in FBGA packages.

Flash memory devices in FBGA packages may be damaged if exposed to ultrasonic cleaning methods. The package and/or data integrity may be compromised if the package body is exposed to temperatures above 150°C for prolonged periods of time.

PIN CONFIGURATION

A0-A18 = 19 addresses

DQ0-DQ14= 15 data inputs/outputs

DQ15/A-1 = DQ15 (data input/output, word

mode),

A-1 (LSB address input, byte

mode)

BYTE# = Selects 8-bit or 16-bit mode

CE# = Chip enable
OE# = Output enable
WE# = Write enable

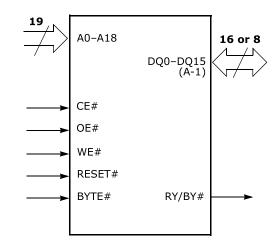
RESET# = Hardware reset pin, active low

RY/BY# = Ready/Busy# output

 V_{CC} = 3.0 volt-only single power supply

(see Product Selector Guide for

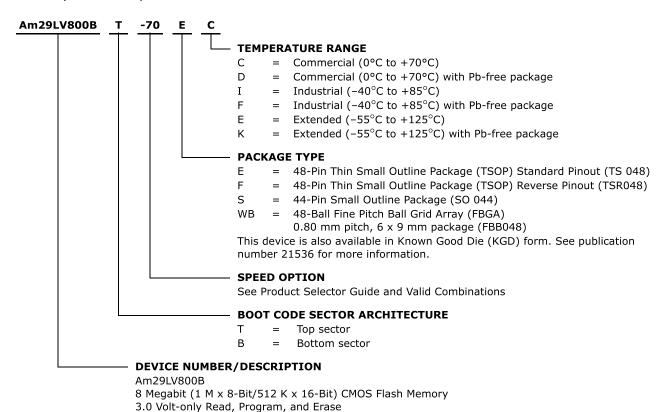
speed


options and voltage supply

tolerances)

 V_{SS} = Device ground

NC = Pin not connected internally


LOGIC SYMBOL

ORDERING INFORMATION

Standard Products

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of the elements below.

Valid Combinations for TSOP and SO Package					
AM29LV800BT-70,	EC, EI, FC, FI, SC, SI,				
AM29LV800BB-70	ED, EF, SD, SF				
AM29LV800BT-90,	EC, EI, EE, ED, EF				
AM29LV800BB-90	FC, FI, FE,				
AM29LV800BT-120, AM29LV800BB-120	SC, SI, SE, SD, SF, EK, SK				

Valid Combinations for FBGA Packages						
Order Number		Package Marking				
AM29LV800BT-70, AM29LV800BB-70	WBC, WBD, WBI, WBF	L800BT70V, L800BB70V	C, D, I, F			
AM29LV800BT-90, AM29LV800BB-90	WBC, WBI,	L800BT90V, L800BB90V	C, I,			
AM29LV800BT-120, AM29LV800BB-120	WBD, WBF, WBK, WBE	L800BT12V, L800BB12V	D, F K, E			

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

IO Am29LV800B