
Features

- High-performance, Low-power AVR® 8-bit Microcontroller
- Advanced RISC Architecture
 - 90 Powerful Instructions Most Single Clock Cycle Execution
 - 32 x 8 General Purpose Working Registers
 - Fully Static Operation
- Non-volatile Program and Data Memories
 - 1K Byte In-System Programmable Flash Program Memory Endurance: 1,000 Write/Erase Cycles
 - 64 Bytes EEPROM
 - Endurance: 100,000 Write/Erase Cycles
 - Programming Lock for Flash Program Data Security
- Peripheral Features
 - Interrupt and Wake-up on Pin Change
 - Two 8-bit Timer/Counters with Separate Prescalers
 - One 150 kHz, 8-bit High-speed PWM Output
 - 4-channel 10-bit ADC
 - One Differential Voltage Input with Optional Gain of 20x
 - On-chip Analog Comparator
 - Programmable Watchdog Timer with On-chip Oscillator
- Special Microcontroller Features
 - In-System Programmable via SPI Port
 - Enhanced Power-on Reset Circuit
 - Programmable Brown-out Detection Circuit
 - Internal, Calibrated 1.6 MHz Tunable Oscillator
 - Internal 25.6 MHz Clock Generator for Timer/Counter
 - External and Internal Interrupt Sources
 - Low-power Idle and Power-down Modes
- Power Consumption at 1.6 MHz, 3V, 25°C
 - Active: 3.0 mA
 - Idle Mode: 1.0 mA
 - Power-down: < 1 μA</p>
- I/O and Packages
- 8-lead PDIP and 8-lead SOIC: 6 Programmable I/O Lines
- Operating Voltages
 - 2.7V 5.5V
- Internal 1.6 MHz System Clock

Pin Configuration

8-bit **AVR**[®] Microcontroller with 1K Byte Flash

ATtiny15L

Summary

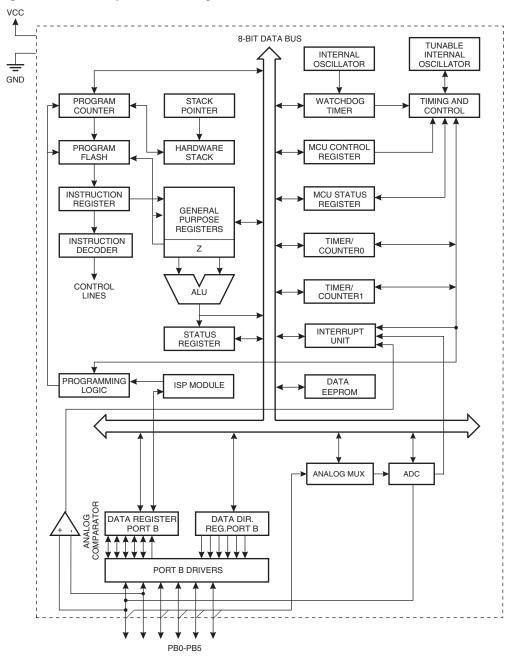
Not recommended for new design

Rev. 1187HS-AVR-09/07

Description

The ATtiny15L is a low-power CMOS 8-bit microcontroller based on the AVR RISC architecture. By executing powerful instructions in a single clock cycle, the ATtiny15L achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.

The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.


The ATtiny15L provides 1K byte of Flash, 64 bytes EEPROM, six general purpose I/O lines, 32 general purpose working registers, two 8-bit Timer/Counters, one with high-speed PWM output, internal Oscillators, internal and external interrupts, programmable Watchdog Timer, 4-channel 10-bit Analog-to-Digital Converter with one differential voltage input with optional 20x gain, and three software-selectable Power-saving modes. The Idle mode stops the CPU while allowing the ADC, anAlog Comparator, Timer/Counters and interrupt system to continue functioning. The ADC Noise Reduction mode facilitates high-accuracy ADC measurements by stopping the CPU while allowing the ADC to continue functioning. The Power-down mode saves the register contents but freezes the Oscillators, disabling all other chip functions until the next interrupt or Hardware Reset. The wake-up or interrupt on pin change features enable the ATtiny15L to be highly responsive to external events, still featuring the lowest power consumption while in the Power-saving modes.

The device is manufactured using Atmel's high-density, Non-volatile memory technology. By combining a RISC 8-bit CPU with Flash on a monolithic chip, the ATtiny15L is a powerful microcontroller that provides a highly flexible and cost-efficient solution to many embedded control applications. The peripheral features make the ATtiny15L particularly suited for battery chargers, lighting ballasts and all kinds of intelligent sensor applications.

The ATtiny15L AVR is supported with a full suite of program and system development tools including macro assemblers, program debugger/simulators, In-circuit emulators and evaluation kits.

Block Diagram

Figure 1. The ATtiny15L Block Diagram

Pin Descriptions

VCC

Supply voltage pin.

GND Ground pin.

Port B (PB5..PB0) Port B is a 6-bit I/O port. PB4..0 are I/O pins that can provide internal pull-ups (selected for each bit). PB5 is input or open-drain output. The use of pin PB5 is defined by a fuse and the special function associated with this pin is External Reset. The port pins are tristated when a reset condition becomes active, even if the clock is not running.

Port B also accommodates analog I/O pins. The Port B pins with alternate functions are shown in Table 1.

Port Pin	Alternate Function
PB0	MOSI (Data Input Line for Memory Downloading) AREF (ADC Voltage Reference) AIN0 (Analog Comparator Positive Input)
PB1	MISO (Data Output Line for Memory Downloading) OC1A (Timer/Counter PWM Output) AIN1 (Analog Comparator Negative Input)
PB2	SCK (Serial Clock Input for Serial Programming) INT0 (External Interrupt0 Input) ADC1 (ADC Input Channel 1) T0 (Timer/Counter0 External Counter Input)
PB3	ADC2 (ADC Input Channel 2)
PB4	ADC3 (ADC Input Channel 3)
PB5	RESET (External Reset Pin) ADC0 (ADC Input Channel 0)

Table 1. Port B Alternate Functions

Analog Pins

Up to four analog inputs can be selected as inputs to Analog-to-Digital Converter (ADC).

Internal Oscillators

The internal Oscillator provides a clock rate of nominally 1.6 MHz for the system clock (CK). Due to large initial variation (0.8 -1.6 MHz) of the internal Oscillator, a tuning capability is built in. Through an 8-bit control register – OSCCAL – the system clock rate can be tuned with less than 1% steps of the nominal clock.

There is an internal PLL that provides a 16x clock rate locked to the system clock (CK) for the use of the Peripheral Timer/Counter1. The nominal frequency of this peripheral clock, PCK, is 25.6 MHz.

ATtiny15L Register Summary

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
\$3F	SREG	- I	Т	Н	S	V	N	Z	С	page 11
\$3E	Reserved									
\$3C	Reserved									
\$3B	GIMSK	-	INT0	PCIE	-	-	-	-	-	page 19
\$3A	GIFR	-	INTF0	PCIF	-	-	-	-	-	page 20
\$39	TIMSK	-	OCIE1A	-	-	-	TOIE1	TOIE0	-	page 20
\$38	TIFR	-	OCF1A	-	-	-	TOV1	TOV0	-	page 21
\$37	Reserved									1 0
\$36	Reserved									
\$35	MCUCR	-	PUD	SE	SM1	SM0	-	ISC01	ISC00	page 22
\$34	MCUSR	-	-	-	_	WDRF	BORF	EXTRF	PORF	page 18
\$33	TCCR0	-	-	-	-	-	CS02	CS01	CS00	page 27
\$32	TCNT0					Inter0 (8-Bit)				page 28
\$31	OSCCAL					bration Register				page 24
\$30	TCCR1	CTC1	PWM1	COM1A1	COM1A0	CS13	CS12	CS11	CS10	page 29
\$2F	TCNT1	0101	I WIVII	COMITAT		nter1 (8-Bit)	0012	0011	0010	page 30
\$2F \$2E	OCR1A			Timor/C	ounter1 Output C		- A (9 Dit)			
\$2E \$2D	OCR1A OCR1B				ounter1 Output C					page 31
						ompare Registe	, ,	0004	DODO	page 32
\$2C	SFIOR	-	-	-	-	-	FOC1A	PSR1	PSR0	page 26
\$2B	Reserved									
\$2A	Reserved									
\$29	Reserved									
\$28	Reserved									
\$27	Reserved									
\$26	Reserved									
\$25	Reserved									
\$24	Reserved									
\$23	Reserved									
\$22	Reserved									
\$21	WDTCR	-	-	-	WDTOE	WDE	WDP2	WDP1	WDP0	page 34
\$20	Reserved									
\$1F	Reserved									
\$1E	EEAR	-	-	EEAR5	EEAR4	EEAR3	EEAR2	EEAR1	EEAR0	page 36
\$1D	EEDR		-	-	EEPROM Data	Register (8-Bit)				page 36
\$1C	EECR	-	-	-	-	EERIE	EEMWE	EEWE	EERE	page 37
\$1B	Reserved		•	•		•	•	•	•	
\$1A	Reserved									
\$19	Reserved									
\$18	PORTB	-	-	-	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0	page 51
\$17	DDRB	-	-	DDB5	DDB4	DDB3	DDB2	DDB1	DDB0	page 51
\$16	PINB	-	-	PINB5	PINB4	PINB3	PINB2	PINB1	PINB0	page 52
\$15	Reserved									F-30 02
\$14	Reserved									
\$13	Reserved									
\$12	Reserved									
\$12	Reserved									
\$10	Reserved									
\$0F	Reserved									
	Reserved									
\$0E	Reserved									
\$0D										
\$0C	Reserved									
\$0B	Reserved									
\$0A	Reserved									
\$09	Reserved		1		1 .		1			
\$08	ACSR	ACD	ACBG	ACO	ACI	ACIE	-	ACIS1	ACIS0	page 39
\$07	ADMUX	REFS1	REFS0	ADLAR	-	-	MUX2	MUX1	MUX0	page 46
\$06	ADCSR	ADEN	ADSC	ADFR	ADIF	ADIE	ADPS2	ADPS1	ADPS0	page 47
\$05	ADCH					gister High Byte				page 49
\$04	ADCL				ADC Data Re	gister Low Byte				page 49
φ0+										
	Reserved									

ATtiny15L Instruction Set Summary

Mnemonic	Operands	Description	Operation	Flags	# Clocks
ARITHMETIC AND			opolation	1 lugo	
ADD	Rd, Rr	Add Two Registers	$Rd \leftarrow Rd + Rr$	Z,C,N,V,H	1
ADC	Rd, Rr	Add with Carry Two Registers	$Rd \leftarrow Rd + Rr + C$	Z,C,N,V,H	1
SUB	Rd, Rr	Subtract Two Registers	Rd ← Rd - Rr	Z,C,N,V,H	1
SUBI	Rd, K	Subtract Constant from Register	Rd ← Rd - K	Z,C,N,V,H	1
SBC	Rd, Rr	Subtract with Carry Two Registers	$Rd \leftarrow Rd - Rr - C$	Z,C,N,V,H	1
SBCI	Rd, K	Subtract with Carry Constant from Reg.	$Rd \leftarrow Rd - K - C$	Z,C,N,V,H	1
AND	Rd, Rr	Logical AND Registers	$Rd \leftarrow Rd \bullet Rr$	Z,N,V	1
ANDI	Rd, K	Logical AND Register and Constant	$Rd \leftarrow Rd \bullet K$	Z,N,V	1
OR	Rd, Rr	Logical OR Registers	$Rd \leftarrow Rd v Rr$	Z,N,V	1
ORI	Rd, K	Logical OR Register and Constant	$Rd \leftarrow Rd \lor K$	Z,N,V	1
EOR	Rd, Rr	Exclusive OR Registers	$Rd \leftarrow Rd \oplus Rr$	Z,N,V	1
COM	Rd	One's Complement	$Rd \leftarrow \$FF - Rd$	Z,C,N,V	1
NEG	Rd	Two's Complement	Rd ← \$00 - Rd	Z,C,N,V,H	1
SBR	Rd, K	Set Bit(s) in Register	$Rd \leftarrow Rd \lor K$	Z,N,V	1
CBR	Rd, K	Clear Bit(s) in Register	$Rd \leftarrow Rd \bullet (FFh - K)$	Z,N,V	1
INC	Rd	Increment	$Rd \leftarrow Rd + 1$	Z,N,V	1
DEC	Rd	Decrement	$Rd \leftarrow Rd - 1$	Z,N,V	1
TST	Rd	Test for Zero or Minus	$Rd \leftarrow Rd \bullet Rd$	Z,N,V	1
CLR	Rd	Clear Register	Rd ← Rd⊕Rd	Z,N,V	1
SER	Rd	Set Register	$Rd \leftarrow FF$	None	1
BRANCH INSTRUC					
RJMP	k	Relative Jump	$PC \leftarrow PC + k + 1$	None	2
RCALL	k	Relative Subroutine Call	$PC \leftarrow PC + k + 1$	None	3
RET		Subroutine Return		None	4
RETI		Interrupt Return	PC ← STACK		4
CPSE	Rd, Rr	Compare, Skip if Equal	if $(Rd = Rr) PC \leftarrow PC + 2 \text{ or } 3$	None	1/2
CP	Rd, Rr	Compare	Rd - Rr	Z,N,V,C,H	1
CPC	Rd, Rr	Compare with Carry	Rd - Rr - C	Z,N,V,C,H	1
CPI SBRC	Rd, K	Compare Register with Immediate	Rd - K	Z,N,V,C,H	1 1/2
SBRS	Rr, b Rr, b	Skip if Bit in Register Cleared	if $(Rr(b) = 0) PC \leftarrow PC + 2 \text{ or } 3$ if $(Rr(b) = 1) PC \leftarrow PC + 2 \text{ or } 3$	None None	1/2
SBIC	P, b	Skip if Bit in Register is Set Skip if Bit in I/O Register Cleared	if $(P(b) = 0) PC \leftarrow PC + 2 \text{ or } 3$ if $(P(b) = 0) PC \leftarrow PC + 2 \text{ or } 3$		1/2
SBIS	P, b	Skip if Bit in I/O Register is Set	if $(P(b) = 0) PC \leftarrow PC + 2 \text{ or } 3$ if $(P(b) = 1) PC \leftarrow PC + 2 \text{ or } 3$	None None	1/2
BRBS	s, k	Branch if Status Flag Set	if (SREG(s) = 1) then PC \leftarrow PC + k + 1	None	1/2
BRBC	s, k	Branch if Status Flag Cleared	if $(SREG(s) = 0)$ then PC \leftarrow PC + k + 1	None	1/2
BREQ	s, ĸ	Branch if Equal	if $(Z = 1)$ then PC \leftarrow PC + k + 1	None	1/2
BRNE	k	Branch if Not Equal	if (Z = 0) then PC \leftarrow PC + k + 1	None	1/2
BRCS	k	Branch if Carry Set	if (C = 1) then PC \leftarrow PC + k + 1	None	1/2
BRCC	k	Branch if Carry Cleared	if (C = 0) then PC \leftarrow PC + k + 1	None	1/2
BRSH	k	Branch if Same or Higher	if (C = 0) then PC \leftarrow PC + k + 1	None	1/2
BRLO	k	Branch if Lower	if (C = 1) then PC \leftarrow PC + k + 1	None	1/2
BRMI	k	Branch if Minus	if (N = 1) then PC \leftarrow PC + k + 1	None	1/2
BRPL	k	Branch if Plus	if (N = 0) then PC \leftarrow PC + k + 1	None	1/2
BRGE	k	Branch if Greater or Equal, Signed	if (N \oplus V= 0) then PC \leftarrow PC + k + 1	None	1/2
BRLT	k	Branch if Less Than Zero, Signed	if (N \oplus V= 1) then PC \leftarrow PC + k + 1	None	1/2
BRHS	k	Branch if Half-carry Flag Set	if (H = 1) then PC \leftarrow PC + k + 1	None	1/2
BRHC	k	Branch if Half-carry Flag Cleared	if (H = 0) then PC \leftarrow PC + k + 1	None	1/2
BRTS	k	Branch if T-flag Set	if (T = 1) then PC \leftarrow PC + k + 1	None	1/2
BRTC	k	Branch if T-flag Cleared	if (T = 0) then PC \leftarrow PC + k + 1	None	1/2
BRVS	k	Branch if Overflow Flag is Set	if (V = 1) then PC \leftarrow PC + k + 1	None	1/2
BRVC	k	Branch if Overflow Flag is Cleared	if (V = 0) then PC \leftarrow PC + k + 1	None	1/2
BRIE	k	Branch if Interrupt Enabled	if (I = 1) then PC \leftarrow PC + k + 1	None	1/2
BRID	k	Branch if Interrupt Disabled	if (I = 0) then PC \leftarrow PC + k + 1	None	1/2
DATA TRANSFER	INSTRUCTIONS				
LD	Rd, Z	Load Register Indirect	$Rd \leftarrow (Z)$	None	2
ST	Z, Rr	Store Register Indirect	$(Z) \leftarrow Rr$	None	2
MOV	Rd, Rr	Move between Registers	$Rd \leftarrow Rr$	None	1
LDI	Rd, K	Load Immediate	$Rd \leftarrow K$	None	1
IN	Rd, P	In Port	$Rd \leftarrow P$	None	1
OUT	P, Rr	Out Port	P ← Rr	None	1
LPM		Load Program Memory	$R0 \leftarrow (Z)$	None	3
BIT AND BIT-TEST				T	[
SBI	P, b	Set Bit in I/O Register	I/O(P,b) ← 1	None	2

ATtiny15L Instruction Set Summary (Continued)

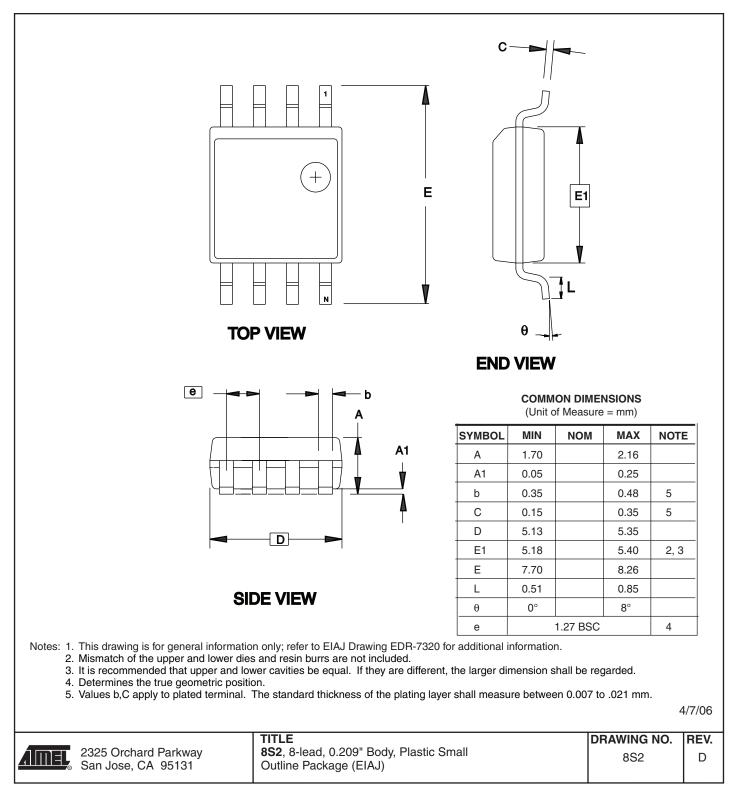
Mnemonic	Operands	Description	Operation	Flags	# Clocks
CBI	P, b	Clear Bit in I/O Register	I/O(P,b) ← 0	None	2
LSL	Rd	Logical Shift Left	$Rd(n+1) \leftarrow Rd(n), Rd(0) \leftarrow 0$	Z,C,N,V	1
LSR	Rd	Logical Shift Right	$Rd(n) \leftarrow Rd(n+1), Rd(7) \leftarrow 0$	Z,C,N,V	1
ROL	Rd	Rotate Left through Carry	$Rd(0) \leftarrow C, Rd(n+1) \leftarrow Rd(n), C \leftarrow Rd(7)$	Z,C,N,V	1
ROR	Rd	Rotate Right through Carry	$Rd(7) \leftarrow C, Rd(n) \leftarrow Rd(n+1), C \leftarrow Rd(0)$	Z,C,N,V	1
ASR	Rd	Arithmetic Shift Right	Rd(n) ← Rd(n+1), n = 06	Z,C,N,V	1
SWAP	Rd	Swap Nibbles	$Rd(30) \leftarrow Rd(74), Rd(74) \leftarrow Rd(30)$	None	1
BSET	S	Flag Set	$SREG(s) \leftarrow 1$	SREG(s)	1
BCLR	s	Flag Clear	$SREG(s) \leftarrow 0$	SREG(s)	1
BST	Rr, b	Bit Store from Register to T	$T \leftarrow Rr(b)$	Т	1
BLD	Rd, b	Bit Load from T to Register	$Rd(b) \leftarrow T$	None	1
SEC		Set Carry	C ← 1	С	1
CLC		Clear Carry	C ← 0	С	1
SEN		Set Negative Flag	N ← 1	N	1
CLN		Clear Negative Flag	N ← 0	N	1
SEZ		Set Zero Flag	Z ← 1	Z	1
CLZ		Clear Zero Flag	Z ← 0	Z	1
SEI		Global Interrupt Enable	I ← 1	1	1
CLI		Global Interrupt Disable	l ← 0	1	1
SES		Set Signed Test Flag	S ← 1	S	1
CLS		Clear Signed Test Flag	S ← 0	S	1
SEV		Set Two's Complement Overflow	V ← 1	V	1
CLV		Clear Two's Complement Overflow	$V \leftarrow 0$	V	1
SET		Set T in SREG	T ← 1	Т	1
CLT		Clear T in SREG	T ← 0	Т	1
SEH		Set Half-carry Flag in SREG	H ← 1	Н	1
CLH		Clear Half-carry Flag in SREG	H ← 0	Н	1
NOP		No Operation		None	1
SLEEP		Sleep	(see specific descr. for Sleep function)	None	1
WDR	1	Watchdog Reset	(see specific descr. for WDR/timer)	None	1

Ordering Information

Power Supply	Speed (MHz)	Ordering Code	Package	Operation Range
2.7 - 5.5V	1.6	ATtiny15L-1PC ATtiny15L-1PU ⁽¹⁾ ATtiny15L-1SC ATtiny15L-1SU ⁽¹⁾	8P3 8P3 8S2 8S2	Commercial (0°C to 70°C)
2.7 - 5.3V	1.0	ATtiny15L-1PI ATtiny15L-1PU ⁽¹⁾ ATtiny15L-1SI ATtiny15L-1SU ⁽¹⁾	8P3 8P3 8S2 8S2	Industrial (-40°C to 85°C)

Note: 1. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.

Package Type		
8P3	8-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)	
8S2	8-lead, 0.200" Wide, Plastic Gull Wing Small Outline (EIAJ SOIC)	


Packaging Information

8P3

Datasheet revision history

Rev H - 09/07	1. Updated "Ordering Information" on page 78.
Rev G - 06/07	1. "Not recommended for new design"
Rev F - 06/05	1. Updated V_{BOT} in Table 4 on page 14.
	2. Added "Unconnected Pins" on page 51.
	3. Updated "Packaging Information" on page 9.

Headquarters

Atmel Corporation 2325 Orchard Parkway San Jose, CA 95131 USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

International

Atmel Asia Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778 Fax: (852) 2722-1369 Atmel Europe Le Krebs 8, Rue Jean-Pierre Timbaud BP 309 78054 Saint-Quentin-en-Yvelines Cedex France Tel: (33) 1-30-60-70-00 Fax: (33) 1-30-60-71-11

Atmel Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Product Contact

Web Site www.atmel.com Technical Support avr@atmel.com Sales Contact www.atmel.com/contacts

Literature Requests www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDI-TIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© Atmel Corporation 2007. All rights reserved. Atmel[®], logo and combinations thereof, AVR[®] and others are the registered trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.