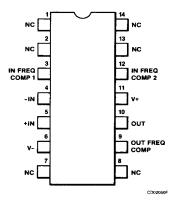
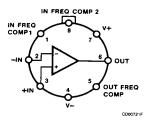


A Schlumberger Company

MIL-STD-883 July 1986 — Rev 2⁵

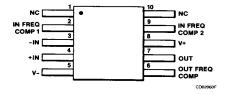

μA709QB High Performance Operational Amplifier

Aerospace and Defense Data Sheet Linear Products


Description

The μ A709QB is a monolithic high gain operational amplifier constructed using the Fairchild Planar Epitaxial process. It features low offset, high input impedance, large input common mode range, high output swing under load, and low power consumption. The device displays exceptional temperature stability and will operate over a wide range of supply voltages with little performance degradation. The amplifier is intended for use in DC servo systems, high impedance analog computers, low level instrumentation applications and for the generation of special linear and non-linear transfer functions.

Connection Diagram 14-Lead DIP (Top View)



Connection Diagram 8-Lead Can (Top View)

Lead 4 connected to case.

Connection Diagram 10-Lead Flatpak (Top View)

Order Information

	Case/ Finish				
Part No.	Finish				
μA709DMQB	CA				
μA709HMQB	GC				
"A709EMOR	LΙΛ				

Package Code Mil-M-38510, Appendix C

D-1 14 Lead DIP A-1 8-Lead Can F-4 10-Lead Flatpak

μΑ709QB

Absolute Maximum Ratings

Storage Temperature Range -65°C to +175°C Operating Temperature Range -55°C to +125°C 300°C Lead Temperature (soldering, 60 s) Internal Power Dissipation 10 Can and Flatpak 330 mW DIP 400 mW Supply Voltage ± 18 V Differential Input Voltage ±5.0 V Input Voltage ± 10 V

5.0 s

Processing: MIL-STD-883, Method 5004

Burn-In: Method 1015, Condition A, PDA calculated

using Method 5005, Subgroup 1

Quality Conformance Inspection: MIL-STD-883,

Method 5005

Group A Electrical Tests Subgroups:

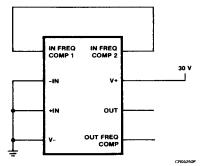
- 1. Static tests at 25°C
- 2. Static tests at 125°C
- 3. Static tests at -55°C
- 4. Dynamic tests at 25°C
- 5. Dynamic tests at 125°C
- 6. Dynamic tests at -55°C
- 9. AC tests at 25°C

Group C and D Endpoints: Group A, Subgroup 1

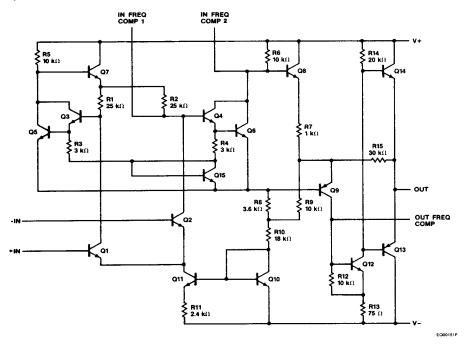
Notes

1. 100% Test and Group A

Short Circuit Duration


- 2. Group A
- 3. Periodic tests, Group C
- 4. Guaranteed but not tested
- When changes occur, FSC will make data sheet revisions available. Contact local sales representative for the latest revision.
- For more information on device function, refer to the Fairchild Linear Data Book Commercial Section.
- 7. Z_I is guaranteed by l_{IB} : Z_I = 2.0 V_T/ l_{IB} , V_T = 26 mV at 25°C, 34 mV at 125°C, and 19 mV at -55°C.
- 8. P_c is guaranteed by I_{CC} : P_c = 30 I_{CC} .
- 9. VIR is guaranteed by the CMR test.
- Rating applies to ambient temperatures up to 125°C. Above 125°C ambient, derate linearly at 150°C/W for the Can and Flatpak, and 120°C/W for the DIP.

μ A709QB


 μA709QB Electrical Characteristics $\pm\,9.0~\text{V} \leqslant \text{V}_{\text{CC}} \leqslant \pm\,15~\text{V}$

Symbol	Character	istic	Con	dition	Min	Max	Unit	Note	Subgrp
V _{IO}	Input Offset Voltage		50 $\Omega \leq R_S \leq 10 \text{ k}\Omega$, $V_{CM} = 0 \text{ V}$			5.0	mV	1	1
						6.0	mV	1	2,3
lio	Input Offset Current		V _{CM} = 0 V			200	nA	1	1,2
יוט						500	nA	1	3
I _{IB}	I _{iB} Input Bias Current		$V_{CC} = \pm 15 \text{ V}, V_{CM} = 0 \text{ V}$			340	nA	1	1
						950	nA	1	3
Z _I Input Impe	Input Impedance ⁷				150		kΩ	1	1
					40		kΩ	1	3
Icc	Supply Current	rent $V_{CC} = \pm 15 \text{ V}$			5.5	mA	1	1	
Pc	Power Consumption	$V_{CC} = \pm 15 \text{ V}$				165	mW	1	1
CMR	Common Mode Reje	ection	$V_{CM} = \pm 8.0 \text{ V}, R_S = 10 \text{ k}\Omega$		70		dB	1	1,2,3
V_{IR}	Input Voltage Range	9	V _{CC} = ± 15 V		± 8.0		٧	1	1,2,3
PSRR	Power Supply Rejection Ratio		$\pm 9.0 \text{ V} \leqslant \text{V}_{\text{CC}} \leqslant \pm 18 \text{ V},$ $\text{R}_{\text{S}} = 10 \text{ k}\Omega$			150	μV/V	1	1,2,3
A _{VS}	Large Signal Voltage Gain		$V_{CC} = \pm 15 \text{ V}, \text{ R}_L = 2.0 \text{ k}\Omega,$ $V_O = 10 \text{ k}\Omega$		25	70	V/mV	1	4,5,6
V _{OP}	Output Voltage Swing	ng	V _{CC} = ± 15 V	$R_L = 10 \text{ k}\Omega$	± 12		٧	1	4,5,6
			$R_L = 2.0 \text{ k}\Omega$	± 10		٧	1	4,5,6	
TR(t _r)	Transient Response	Rise Time	$\begin{split} &V_{CC}=\pm15\text{ V},\;V_1=20\text{ mV},\\ &R_L=2.0\text{ k}\Omega,\;C1=5.0\text{ nF} \\ &V_{CC}=\pm15\text{ V},\;R_2=50\Omega,\\ &C_L=100\text{ pF},\;R1=1.5\text{ k}\Omega,\\ &C2=200\text{ pF} \end{split}$			1.0	μs	2	9
TR(o _s)		Overshoot				30	%	2	9

Primary Burn-In Circuit

Equivalent Circuit

