Advanced Applications Need Alternate Switch Technologies

Although conventional reed switches have been in use for their excellent properties, their large size makes them difficult to integrate in advanced applications. Most equipment now use miniature components and manufacturers have found a way to reduce the size of reed switches to match. They now use HARM MEMS or High Aspect Ratio Microfabrication MEMS technology to make miniature reed switches, keeping all their desirable properties intact.

Reed switches are popular because they do not require power to operate, they offer milliohms of ON resistance, and tera-ohms of insulation when OFF. They are immune to ESD or electrostatic discharge. Moreover, they require very little additional circuitry to operate and hence, take up very little real estate on the printed circuit board. Some advanced applications where the alternate HARM MEMS reed switches are useful are as follows.

Small Portable Hearing Aids

The baby-boomer market is increasingly in need of small portable medical devices such as hearing aids or hearing assistance devices. HARM MEMS switches are ideal for the control functions in these devices. As the user preference for small, almost unnoticeable hearing aids grows, the ever-shrinking devices are making increasing use of the tiny magnetically operated switches for functions such as Telecoil operation and program switching. As these switches need no power to operate, the once bulky behind-the-ear hearing aids are disappearing into the ear canal itself. Since batteries have also shrunk, the zero power operation of the microfabrication reed switches is a boon for the user.

Endoscopes the Size of Capsules

No one forgets the trauma of getting an endoscope done to know what is wrong within his or her gastrointestinal tract. However, that might soon be outdated, as HARM MEMS can shrink the endoscope down to the size of a capsule, which the patient swallows. As the pill shaped endoscope passes down the gastrointestinal tract, its one or more video cameras capture images lit by its white LED headlamps, also a part of the pill.

As the device is small enough to be swallowed easily, the capsule endoscope has electronic circuitry that is highly miniaturized, so that it can reach where conventional endoscopes or colonoscopes cannot. The tiny pill requires a mechanism to allow it to start functioning just before it is swallowed. In addition, there must be no drain from the tiny batteries when the device is in storage. Active switches are not helpful here, as they draw current even when inactive and hence reduce the shelf life. HARM MEMS switches are the best fit here because of their tiny size and zero power consumption.

Insulin Delivery Pumps

All over the world, diabetes is increasingly affecting people of all ages. In the most severe form of this disease, insulin must be administered multiple times daily to the body. There are two ways to do this – either by multiple daily syringe injections or via insulin pumps. The pumps generally contain a disposable insulin reservoir. The pump unit must reliably detect this reservoir. Modern insulin pumps are small credit card sized and contain a HARM MEMS reed switch, which is activated by a magnet attached to the reservoir.