Category Archives: Batteries

What are Solid-State Batteries?

The transport industry is currently undergoing a revolution with EVs or electric vehicles on the roads. EVs require batteries, and many EV manufacturers are now manufacturing their own batteries, targeting low-cost batteries with the most range and the fastest charging speed. While many industries are still using lithium-ion batteries, others are moving towards solid-state batteries. Compared to a few years ago, major breakthroughs are finally bringing solid-state batteries closer to mass production.

Although solid-state batteries have been in existence for some time now, and scientists have been researching them, they have been commercially available only in the last decade or so. Specific advantages of solid-state batteries include lower costs, superior energy density, and faster charging times.

Many companies have been researching solid-state battery technology for years. For instance, Toyota claims to be on the verge of producing solid-state batteries commercially for EVs, and they hold more than 1,000 patents.

Conventionally, a lithium-ion battery has an anode and a cathode, with a polymer separator keeping them apart. A liquid electrolyte floods the entire cell and is the medium through which lithium ions can travel while the battery is charging/discharging.

In a solid lithium-ion battery, a solid electrolyte layer separates the anode and the cathode, allowing lithium ions to travel through it. The anode is of pure lithium, which gives it a higher energy density than that of regular batteries. Theoretically, the energy density from solid lithium-ion batteries is roughly about 6300 watts per hour. Compared to the energy density of gasoline, a solid lithium-ion battery offers an energy density of about 9500 watts per liter.

The major advantage of solid-state batteries is their smaller size and weight. Additionally, they pose no fire hazards. As these batteries are very safe, they do not require as many safeguards to secure them. Their smaller size allows packing them to higher power capacity, and they do not release toxins. Solid-state batteries run 80 percent cooler than regular batteries.

With all the above advantages, using solid-state batteries in electric vehicles offer them greater range, safer operation, faster charging, higher voltages, and longer cycle life. However, solid-state batteries must overcome some disadvantages still.

The first of these obstacles is the dendrite formation. Lithium is a highly corrosive metal, requiring the use of chemically inert solid electrolytes. Over time, dendrite growth increases to the extent of destroying the battery. During charging, these batteries usually grow spike-like structures that can develop and begin to puncture the dividers, causing short-circuits in the battery. Manufacturers are using ceramic separators to overcome the dendrite menace.

Solid-state batteries currently do not perform well at low temperatures. This affects its long-term durability.

So far, the biggest detriment to solid-state batteries has been their exorbitant cost. However, present indications from manufacturers like Toyota suggest they have surmounted the price barrier.

Therefore, at present, the only problem still remaining for solid-state battery commercialization is their low-temperature performance. To be a viable alternative, solid-state batteries must perform in all kinds of variable environments and climates. However, manufacturers are offering assurances that they have overcome this hurdle also. Recharging stations need to be able to handle the faster-charging currents as compared to that of regular lithium-ion batteries.

The Battery of the Future — Sodium Ion

Currently, Lithium-ion batteries rule the roost. However, there are several disadvantages to this technology. The first is that Lithium is not an abundant material. Compared to this, Sodium is one of the most abundantly available materials on the earth, therefore it is cheap. That makes it the most prime promising candidate for new battery technology. So far, however, the limited performance of Sodium-ion batteries has not allowed them a large-scale integration into the industry.

PNNL, or the Pacific Northwest National Laboratory, of the Department of Energy, is about to turn the tides in favor of Sodium-ion technology. They are in the process of developing a Sodium-ion battery that has excelled in laboratory tests for extended longevity. By ingeniously changing the ingredients of the liquid core of the battery, they have been able to overcome the performance issues that have plagued this technology so far. They have described their findings in the journal Nature Energy, and it is a promising recipe for a battery type that may one day replace Lithium-ion.

According to the lead author of the team at PNNL, they have shown in principle that Sodium-ion battery technology can be long-lasting and environmentally friendly. And all this is due to the use of the right salt for the electrolyte.

Batteries require an electrolyte that helps in keeping the energy flowing. By dissolving salts in a solvent, the electrolyte forms charged ions that flow between the two electrodes. As time passes, the charged ions and electrochemical reactions helping to keep the energy flowing get slower, and the battery is unable to recharge anymore. In the present Sodium-ion battery technologies, this process was happening much faster than in Lithium-ion batteries of similar construction.

A battery loses its ability to charge itself through repeated cycles of charging and discharging. The new battery technology developed by PNNL can hold its ability to be charged far longer than the present Sodium-ion batteries can.

The team at PNNL approached the problem by first removing the liquid solution and the salt solution in it and replacing it with a new electrolyte recipe. Laboratory tests proved the design to be durable, being able to hold up to 90 percent of its cell capacity even after 300 cycles of charges and discharges. This is significantly higher than the present chemistry of Sodium-ion batteries available today.

The present chemistry of the Sodium-ion batteries causes the dissolution of the protective film on the anode or the negative electrode over time. The film allows Sodium ions to pass through while preserving the life of the battery, and therefore, quite significantly critical. The PNNL technology protects this film by stabilizing it. Additionally, the new electrolyte places an ultra-thin protective layer on the cathode or positive electrode, thereby helping to further contribute to the stability of the entire unit.

The new electrolyte that PNNL has developed for the Sodium-ion batteries is a natural fire-extinguishing solution. It also remains non-changing with temperature excursions, making the battery operable at high temperatures. The key to this feature is the ultra-thin protection layer the electrolyte forms on the anode. Once formed, the thin layer remains a durable cover, allowing the long cycle life of the battery.

Battery Charge Controller Modules

Charge controllers prevent batteries from overcharging and over-discharging. Recharging batteries too often or discharging them excessively can harm them. By managing the battery voltage and current, a battery charge controller module can keep the battery safe for a long time.

Charge controllers protect the battery and allow it to deliver power while maintaining the efficiency of the charging system. Battery charge controller modules only work with DC loads connected to the battery. For AC loads, it is necessary to connect an inverter after the battery.

Charge controllers have a few key functions. They must protect the battery from overcharging, and they do this by controlling the charging voltage. They protect the battery from unwanted and deep discharges. As the battery voltage falls below a pre-programmed discharge value, the charge controller automatically disconnects the load. When the battery connects to a solar photovoltaic module, the charge controller prevents reverse current flow through the PV modules at night. The charge controller also provides information about the state of charge of the battery.

Various types of charge controllers are available in the market. Two of the most popular are the PWM or Pulse Width Modulation type and the MPPT or Maximum Power Point Tracking type. Although an MPPT type charge controller is more expensive than a PWM type, the former helps to boost the performance of solar arrays connected to the batteries. On the other hand, a PWM-type charge controller can extend the lifecycle of a battery bank at the expense of a lower performance from the solar panel. Typically, charge controllers exhibit a lifespan of about 15 years.

The XH-M60x family of battery charge controller modules is among the low-cost varieties offered by Chinese manufacturers. The most popular among them is the XH-M603. As the XH-M603 is not an overall charger, it is necessary to connect the battery to an external charger compatible to the battery.

The user can set optimal thresholds for initiating and terminating the battery charging cycle—making the charge controller a rather universal type, suitable for a wide range of batteries. Therefore, when the battery voltage falls below the set start value, the onboard relay starts routing the charging voltage from the charger to the battery. As soon as the battery voltage exceeds the stop value, the relay terminates the charging process.

XH-M603 battery charge controller module has a three-digit display on board for indicating the battery voltage. The display resolution is 0.1V. It accepts batteries with voltages between 12 and 24 V, Whereas it accepts input charging voltages between 10 and 30 VDC. The control precision is 0.1 V, while the DC voltage output tolerance is ±0.1 VDC. The overall dimensions of the module are 82 x 58 x 18 mm.

A small microcontroller controls the module, which has two voltage regulator chips onboard. There are a bunch of discrete components, including two micro-switches, a screw terminal block, an electromagnetic display, a three-digit Led display, and one red LED.

The charger connection to the module must maintain proper polarity. Likewise, the battery polarity is also important for the proper functioning of the module.

Always-On Battery Life Improvement with ML Chip

Devices that must always remain on must conserve power in every way possible to extend their battery life. Their design starts with the lowest possible system power and every mode of operation must consume the bare minimum power necessary for operation. Now, with AML100, an analog machine learning or ML chip from Aspinity, it is possible to cut down the system power by up to 95%, even when the system always remains on. AML100 consumes less than 100 µA of always-on system power. This opens new types of products for biometric monitoring, preventive and predictive maintenance, commercial and home security, and voice-first systems, all of which are systems that continuously must remain switched on.

The movement of data to and from a system consumes power. One of the most effective ways of reducing power consumption is, therefore, minimizing the amount and movement of data through a system. The AML100 transfers the machine learning workload to the analog domain where it consumes ultra-low levels of power. The chip determines the relevancy of data with highly accurate and near-zero power. By intelligently reducing the data at the sensor, while it is still in the analog mode, the tiny ML chip keeps its digital components in low-power mode. Only when it detects important data, does the chip allows the analog data to enter the digital domain. This eliminates the extra power consumption in digitizing, processing, and transmission of irrelevant analog data.

The AML100 consists of an array of independent analog blocks configurable to be fully programmable with software. This allows the chip to support a wide range of functions that include sensor interfacing and machine learning. It is possible to program the device in the field, using software updates, or with newer algorithms that target other always-on applications. When it is in always-sensing mode, the chip consumes a paltry 20 µA, and it can support four analog sensors in different combinations like accelerometers, microphones, and so on.

At present, Aspinity is producing the AML100 chip in sampling numbers for key customers. The chip has dimensions of 7 x 7 mm and is housed in a 48-pin QFN package. Aspinity has slated the volume production of this chip for the fourth quarter of 2022 and is presently offering two evaluation kits with software. One of the kits is for glass breakage and T3/T4 alarm tone detection, while the other is for voice detection with preroll collection and delivery. Other kits with software for other applications are also available from Aspinity on request.

AML100 is the first product in the AnalogML family from Aspinity. It detects sensor-driven events from raw, analog sensors by classifying the data. It allows developers to design edge-processing devices with significantly low power consumption, those that are always on. The device has a unique RAMP or Reconfigurable Analog Modular Processor technology platform that allows the AML100 to reduce the always-on system power by more than 95%. This enables designers to build ultra-low power always-on solutions with edge-processing techniques for biomedical monitoring, predictive and preventive maintenance for industrial equipment, acoustic event monitoring applications, and voice-driven systems.

Monitoring Battery Health

The prolific use of battery-powered instruments for regular use in the consumer and industrial fields requires monitoring battery health for proper functioning. Usually, a battery health monitoring system uses a microcontroller and a software user interface. This arrangement monitors all the batteries in a battery bank 24×7 and identifies weak batteries before they actually fail. This helps to improve the overall performance of the system. Stationary applications such as data centers commonly use such battery health monitoring systems.

In vehicles too, it is necessary to have precise and reliable information about the state of health and state of charge of the battery. Battery health is sensitive to temperature, and conventional trucks and buses with diesel engines also frequently fail during winter and autumn. Now, vehicle fleets use solutions for monitoring battery health and the fleet manager does this in a centralized manner.

Analog Devices Inc. presents a solution for monitoring the state of health of primary batteries. The LTC3337 from Analog Devices provides information such as battery cell impedance, voltage, discharge, and temperature. The data from LTC3337 is not only accurate, but the readings are in real-time.

For monitoring the state of health of the battery in real-time, the user must place the LTC3337 in series with the battery terminals. Analog Devices ensure that the series voltage drop is negligibly small when the IC is in series with the battery. Analog Devices has integrated an infinite coulomb counter with a dynamic range to tally all the accumulated battery discharges. LTC3337 stores this information in an internal register which the user can access through an I2C interface. The user can program a discharge alarm with a threshold based on this state of charge. As soon as the state of charge crosses this threshold, the IC generates an interrupt at its IRQ pin. The accuracy of the coulomb counter is constant down to a no-load condition on the battery.

Analog Devices has designed the LTC3337 to be compatible with a wide range of primary batteries with varying voltages. For this, the user can select the peak input current limit of the LTC3337 from 5 mA to 100 mA.

The user can calculate the coulombs from either the BAT IN or BAT OUT pin of the LTC3337—the AVCC pin connection decides this. Some applications require using supercapacitors at the output of the IC. Analog Devices has provided a BAL pin for connecting a stack for supercapacitors for the purpose.

Analog Devices offers LTC3337 as an LFCSP or Lead Frame Chip Scale Package with 12 leads. There is an exposed pad for improving its thermal performance.

The LTC3337 can withstand a voltage range of 5.5 VDC to 8.0 VDC at its input. Its quiescent current is as low as 100 nA. The user can preset the peak input current limits depending on the type of the primary battery. The presents are 5, 10, 15, 20, 25, 50, 75, and 100 mA levels.

LTC3337 is meant for monitoring the state of health of batteries in low-power systems powered by primary batteries. It is very helpful for batteries providing backup and supplies in keep-alive scenarios.

Batteries without Mass

Electric vehicles use various types of batteries to operate. But all of them have one thing in common—the weight of the batteries. Depending on the size of the vehicle, the battery weight is a significant part of the total weight of the vehicle. As a vehicle must carry its batteries along with it, it is unable to fully utilize its total capacity. Engineers and scientists are researching various ways of reducing the battery weight while enhancing its energy density.

Some scientists are thinking in more innovative ways. For instance, scientists in Sweden claim to have developed a structural battery. The advantage of such a battery is it is purportedly stored without mass, as its weight is actually a part of the load-bearing structure. With an energy density of 24 Wh/kg, the design of the battery allows solar-powered vehicles to integrate it easily.

At the Chalmers University of Technology in Sweden, scientists claim to have developed a structural battery. The construction primarily uses carbon fiber, and apart from the structure of the battery, the carbon fiber also acts as a load-bearing material, conductor, and electrode.

Structural batteries use materials with properties of electrochemical energy storage. The primary aim of such devices is to reduce the weight of an object, as the manufacturer can embed the battery to be a part of the structure of the object, such as a drone or an electric vehicle.

According to the scientists, they had started research and developing their massless batteries in 2007. Their main challenge had been to build devices that had good mechanical and electrical properties. They settled on carbon fibers for their battery, as it has the required strength and stiffness to allow integration into structures of electric vehicles. In addition, carbon fibers also exhibit good storage properties.

The scientists claim their batteries may also be applicable to the roof of light city vehicles such as rickshaws. The roof of these vehicles may have solar cells.

The batteries have a structural battery electrolyte matrix material, housing a negative electrode made of carbon fiber, and a positive electrode supported with aluminum film. A glass fiber separator keeps the two electrodes apart.

Apart from reinforcing the material, the carbon fiber also helps to conduct electrons while acting as a host for Lithium. In the same way, the positive electrode foil, apart from providing electrical functionality, also provides mechanical support.

The structural battery electrolyte favors the transport of Lithium ions while transferring mechanical load between the fibers of the device, its particles, and plies. The scientists demonstrated a battery with an elastic modulus of 25 Gpascals and a tensile strength that exceeded 300 Mpascals. While the elastic modulus demonstrates the resistance of the material to elastic deformation, the tensile strength demonstrates the maximum load that the material can support without damage.

With an energy density of 24 Wh/kg, the battery has about twenty percent capacity relative to presently available lithium batteries. However, as the battery reduces the weight of the vehicle significantly, the electric vehicle requires much less energy. Additionally, the lower energy density results in increased safety for the vehicle and its passengers.

3-D Electrodes in Solid-State Batteries

Addionics is an Israeli startup in the rechargeable business. It is recently engaging in redesigning the battery architecture with respect to its electrode technology. The company wants to replace the regular 2-D electrode layer structure in traditional batteries. They want to integrate a 3-D electrode structure. They claim this will provide greater power and energy density, while also extending the life of the battery.

Addionics has five commercial projects lined up. They are presently targeting automotive applications with leading suppliers. The aim of each of these projects is to focus on different battery chemistries and integrate them with the smart 3-D electrode structure. The chemistries they are targeting are solid-state batteries, lithium polymer batteries, silicon anode batteries, lithium iron phosphate batteries, and lithium nickel manganese cobalt oxide batteries.

With the global economy striving towards electrification due to rising greenhouse gas emissions and climate change, the need for replacing renewable energy use, energy storage, and EV adoption is increasing. However, this can succeed only if there are batteries available that are more efficient, safe, and cost-effective.

Scientists all over are devoting huge efforts and expenditures to developing the next generation of batteries. They typically focus on battery chemistry, new chemicals, and unique chemical formulations. This includes lithium-metal and lithium-sulfur.

They are also trying to make current batteries either store more energy or charge/discharge at a faster rate. However, current batteries available in the marketplace today do not have the capacity to deliver both quick charging and extended range for EV applications.

There is also a challenging mismatch between the anode and cathode in current batteries. Addionics is striving to improve battery performance with their technology. They claim their 3-D electrode technology will improve battery performance irrespective of battery chemistry, and do so without increasing the battery price.

Although solid-state batteries hold plenty of promises, their major problem is the mismatch in the anode and cathode capacity. The new technology from Addionics has the advantage of not only solving the electrode mismatch but also providing a solid-state battery with higher energy and more stable performance.

Traditionally, battery electrodes are a 2-dimensional structure, made of dense metal foils with the active material as a layer on the top. However, this 30-year-old design is no longer able to meet the growing demands of performance.

The new 3-D electrode structure lowers the internal resistance of the battery, even at higher loads, as it has the active material integrated throughout the electrode. This increases the active surface area of the battery cell architecture and improves the properties of the electrodes, leading to lower heat generation, less material expansion, improved conductivity, and enhanced energy density in the battery.

The company claims that its new 3-D electrode technology offers significant advantages for any existing or emerging battery chemistry. They claim their new electrodes can reduce the charging time, extend its drive range, and improve the safety and lifetime of the battery. Moreover, the new electrodes do not change the battery size or its components. They also claim their new technology significantly lowers the manufacturing costs of any battery, irrespective of the battery chemistry.

Smart Batteries with Sensors

Quick-charging batteries are in vogue now. Consumers are demanding more compact, quick-charging, lightweight, and high-energy-density batteries for all types of electronic devices including high-efficiency vehicles. Whatever be the working conditions, even during a catastrophe, batteries must be safe. Of late, the Lithium-ion battery technology has gained traction among designers and engineers as it satisfies several demands of consumers, while at the same time being cost-efficient. However, with designers pushing the limits of Li-ion battery technology capabilities, several of these requirements are now conflicting with one another.

While charging and discharging a Li-ion battery, many changes take place in it, like in the mechanics of its internal components, in its electrochemistry, and its internal temperature. The dynamics of these changes also affect the pressure in its interface within the housing of the battery. Over time, these changes affect the performance of the battery, and in extreme cases, can lead to reactions that are potentially dangerous.

Battery designers are now moving towards smart batteries with built-in sensors. They are using piezoresistive force and pressure sensors for analyzing the effects charging and discharging have on the batteries in the long run. They are also embedding these sensors within the battery housing to help alert users to potential battery failures. Designers are using thin, flexible, piezoresistive sensors for capturing relative changes in pressure and force.

Piezoresistive sensors are made of semi-conductive material sandwiched between two thin, flexible polyester films. These are passive elements acting as force-sensitive resistors within an electrical circuit. With no force or pressure applied, the sensors show a high resistance, which drops when the sensor has a load. With respect to conductance, the response to a force is a linear one as long as the force is within the range of the sensor’s capabilities. Designers arrange a network of sensors in the form of a matrix.

When two surfaces press on the matrix sensor, it sends analog signals to the electronics, which converts it into a digital signal. The software displays this signal in real-time to offer the activity occurring across the sensing area. The user can thereby track the force, locate the region undergoing peak pressure, and identify the exact moment of pressure changes.

The matrix sensors offer several advantages. These include about 2000-16000 sensing nodes, element spacing as low as 0.64 mm, capable of measuring pressure up to 25,000 psi, temperature up to 200 °C, and scanning speeds up to 20 kHz.

Designers also use single-point piezoresistive force sensors for measuring force within a single sensing area. They integrate such sensors with the battery as they are thin and flexible, and they can also function as a feedback system for an operational amplifier circuit in the form of a voltage divider. Depending on the circuit design, the user can adjust the force range of the sensor by changing its drive voltage and the resistance of the feedback. This allows the user complete control over measuring parameters like maximum force range, and the measurement resolution within the range. As piezoresistive force sensors are passive devices with linear response, they do not require complicated electronics and work with minimum filtering.

New Battery Technology for UPS

Most people know of the Lithium-ion battery technology in use mainly due to their overwhelming presence in mobile sets. Those who use uninterruptible power supplies for backing up their systems are familiar with the lead-acid cells and the newer lithium-ion cells. Another alternative technology is also coming up mainly for mission-critical facilities such as for data centers. This is the Nickel-Zinc technology, and it has better trade-offs to offer.

But the Nickel-Zinc battery technology is not new. In fact, Thomas Edison had patented it about 120 years ago. In its current avatar, the Nickel-Zinc battery offers superior performance when used in UPS backup systems. They offer better power density, are more reliable, safe, and are highly sustainable.

For instance, higher power density translates into smaller weight and size. This is the major difference between a battery providing energy and a battery providing power. In a data center, the UPS must discharge fast for a short period for maintaining operational continuity. This is what happens during brief outages, or until the backup generators spin up to take over the load. This is the most basic power battery operation, where the battery must deliver a high rate of discharge, and it does so with a small footprint.

On the other hand, Lead-acid and Lithium-ion technologies offer energy batteries. Their design allows them to discharge energy at a lower rate for longer periods. Electric vehicles utilize this feature, and the automotive industry is spending top dollars for increasing the energy density of such EV batteries so that the user can get more mileage or range from their vehicles. This is not very useful for data center backup, as the battery must have a higher energy storage footprint for supporting short duration high power output requirements.

This is where the Nickel-Zinc battery technology comes in. With an energy density nearly twice that of a Lead-acid battery, Nickel-Zinc batteries take up only half the space. Not only is the footprint reduced by half, but the weight also reduces by half for the same power output. As compared to Lithium-ion batteries, Nickel-Zinc batteries not only excel in footprint reduction, but they charge at a faster rate while retaining thermal stability. This feature makes them so useful for mission-critical facility uptime.

Nickel-Zinc batteries have proven their reliability as well. They have clocked over tens of millions of operating hours for providing uninterrupted backup power in mission-critical applications. Another feature very useful for data center operations is the battery string operations of the Nickel-Zinc technology.

When a Lithium-ion or a Lead-acid battery fails, the battery acts as an open circuit, preventing other batteries in the string from transferring power. On the other hand, a weal or a failed Nickel-Zinc cell remains conductive, allowing the rest of the string to continue operations, with a lower voltage. In emergency situations, this feature of the Nickel-Zinc battery is extremely helpful, as the faulty battery replacement can proceed with no operational impact and at a low cost.

In parallel operation also, Nickel-Zinc batteries are more tolerant of string imbalances, thereby maintaining constant power output at significantly lower states of health and charge as compared to batteries of other technologies.

Battery Electrolyte from Wood

Although there exist several types of batteries, all of them function with a common concept—batteries are devices that store electrical energy as chemical energy and convert this chemical energy into electricity when necessary. Although it is not possible to capture and store electricity, it is possible to store electrical energy in the form of chemicals within a battery.

All batteries have three main components—two electrodes or terminals made of different metals, known as anode and cathode, and the electrolyte separating these terminals. The electrolyte is the chemical medium allowing the flow of electrical charges between the terminals inside the battery, When a load connects to a battery, such as an electrical circuit or a light bulb, a chemical reaction near the electrodes creates a flow of electrical energy through the load.

The most commonly used battery today, the lithium battery, typically uses a liquid electrolyte for carrying electrical charges or ions between its electrodes. Scientists are also looking at alternatives like solid electrolytes for future opportunities. A new study offers cellulose derived from wood as one type of solid electrolyte. The advantage of this solid electrolyte from wood is its paper-thin width, allowing the battery to bend and flex for absorbing stress while cycling.

The electrolyte presently in use today in lithium cells has the disadvantage of containing volatile liquids. There is thus a risk of fire in case the device short-circuits. Moreover, there is the possibility of the formation of dendrites—tentacle-like growths—and this can severely compromise the battery’s performance. On the other hand, solid electrolytes, made from non-flammable materials, allow the battery to be less prone to dendrite formation, thereby opening up totally modern possibilities with different battery architecture.

For instance, one of these possibilities involves the anode, one of the two electrodes in the battery. Today’s batteries usually have an anode made from a mix of copper and graphite. With solid electrolytes, scientists claim they can make the battery work with an anode made from pure lithium. They claim the use of pure lithium anode can help to break the bottleneck of energy density. Increased energy density will allow planes and electric cars to travel greater distances before recharging.

Most solid electrolytes that scientists have developed so far are from ceramic materials. Although these solid electrolytes are very good at conducting ions, they cannot withstand the stress of repeated charging and discharging, as they are brittle. Scientists from the University of Maryland and Brown University were seeking an alternative to these solid electrolytes, and they started with cellulose nanofibrils found in wood.

They combined the polymer tubes they derived from wood with copper. This formed a solid ion conductor with conductivity very similar to that in ceramics, and much better than that from any other polymer ion conductor. The scientists claim this happens as the presence of copper creates space within the cellulose polymer chains allows the formation of ion superhighways, enabling lithium ions to travel with substantially high efficiency.

With the material being paper-thin and thereby highly flexible, scientists claim it will be able to tolerate the stresses of battery cycling without damage.