Category Archives: Guides

How mSAP Enhances HDI PCB Capabilities

With 5G technology around the corner, we are looking at the emergence of 5G smartphones. While this requires new manufacturing technologies such as high-density interconnect Printed Circuit Boards (HDI PCB), smartphones need to be less expensive and produced at greater efficiencies. Customers usually covet compact sleek devices. Therefore, manufacturers need to balance function and form so that their products stand out in a crowd in a competitive marketplace. The smartphone market can be a treacherous Read more [...]

What Are Thermoelectric Modules?

Discovery of the Peltier effect in 1834 led to the development of solid-state heat pumps, but the devices became commercially available only in the 1960s, when the combination of ceramic substrates with advanced semiconductor thermocouple materials made it possible. Solid-state heat pumps or thermoelectric modules utilize the Peltier effect to dissipate heat through a heat exchanger. While operating, DC current flowing through the thermoelectric module creates heat transfer and a temperature differential Read more [...]

Selecting Universal Motor Controls

Inside the home, one will find a number of gadgets with the universal motor dominating. Mostly, these are used in high speed, low-cost motor applications, such as in power tools, vacuum cleaner, and countertop blenders. However, not all gadgets perform equally. For example, a bargain-basement blender may make a lot of noise when working. Others may be relatively quieter. While some products have a tendency to overheat, others run cool even if you load them over. Actually, the motor itself has little Read more [...]

How Are Industrial Lasers Cooled?

There are several varieties of industrial lasers. Some lasers, such as fiber lasers, have specific arrangements that enable spreading the heat they generate over a larger surface area. This arrangement gives fiber lasers better cooling characteristics over other media. Other lasers need extra cooling arrangements to remove the heat they generate. For example, ion lasers generate extreme heat when active and need elaborate cooling methods. Other lasers, emitting energy in the microwave and far-infrared Read more [...]

Heat Pipes for Electronic Applications

Electronic applications such as mobile, embedded computing, and servers often use intermediate level heat pipes to cool systems dissipating 15-150 Watts. Usually, such heat pipes use copper tubes and sintered copper wicks with water as the working fluid. System designers incorporate heat pipes when the thermal design has limitations of space and/or weight and other materials such as solid aluminum or copper heat sinks cannot achieve the desired cooling. However, heat pipes for electronic applications Read more [...]

Using the Raspberry Pi to Secure IoT

The popular single board computer, the Raspberry Pi (RBPi), can effectively secure systems that traditional protection mechanisms often cannot. Industrial control system networks and Internet of Things fall under this category. You can use the RBPi2B and later models as an adequate medium for running the various security tools. For this project, you need a Micro SD card of at least 8 GB size, and the bigger it is the better, as you can use the extra space to store a longer log data history, for Read more [...]

Tuning an IoT MEMS Switch

Menlo Microsystems, a startup from GE, is making a MEMS-based switch fit into a broad array of systems related to Internet of Things (IoT). Already incorporated into medical systems of GE, they can tune the chip to act as a relay and power actuator for several types of industrial IoT uses, including using it as an RF switch suitable for mobile systems. Menlo first described their electrostatic switch in 2014. They have designed it with unique metal alloys deposited on a substrate of glass. The arrangement Read more [...]

Thermal Protection Prevents SSR Failure

Solid State Relays (SSR) are replacing conventional electromagnetic relays for load control applications in the industry, as they hold several advantages over the latter. However, SSRs often face overheating causing them to fail. Newer designs now come with integrated thermal protection that improves longevity, efficiency, and system safety by preventing overheating and failure of SSRs. Machinery driven by large motors requires a system to switch off the power supply to the motor on sensing higher Read more [...]

What are Numerical Protection Relays?

Numerical protection relays protect power transformers and distribution systems from various types of faults. For power transformers, these faults include protection from distance, line differential, pilot wire, low-impedance busbar, high-impedance differential, frequency, voltage, failure of circuit breaker, auto reclosing, and synchronism faults. For power distribution systems, these faults include protection from overcurrent, under or overvoltage, directional overcurrent’s, and feeder manager Read more [...]

How are Transformers Protected in the Field?

For maintaining a power grid in continuous working order, power transformers play a critical part. As repair and/or replacement of components in a power grid typically has a long lead time, protection from faults has to limit the damage to a faulted transformer. Moreover, transformer faults need quick prevention, and certain protection features identify operating conditions that could cause a failure of the transformer. This includes over-excitation protection and temperature-based protection. Classification Read more [...]