Category Archives: Newsworthy

Touch-sensing HMI

The key element in the consumer appeal of wearable devices lies in their touch-sensing HMI or human-machine interface—it provides an intuitive and responsive way of interacting via sliders and touch buttons in these devices. Wearable devices include earbuds, smart glasses, and smartwatches with a small touchscreen.

An unimaginable competition exists in the market for such types of wearable devices, continually driving innovation. The two major features over which manufacturers typically battle for supremacy and which matter particularly to consumers are—run time between battery charges, and the form factor. Consumers typically demand a long run-time between charges, and they want a balance between convenience, comfort, and a plethora of features, along with a sleek and attractive design. This is a considerable challenge for the designers and manufacturers.

For instance, while the user can turn off almost all functions in a wearable device like a smartwatch for long periods between user activity, the touch-sensing HMI must always remain on. This is because the touch intentions of the user are randomly timed. They can touch-activate their device any time they want to—there is no pattern that allows the device to know in advance when the user is about to touch-activate it.

Therefore, the device must continuously scan to detect a touch for the entire time it is powered up, leading to power consumption by the HMI subsystem, even during the low-power mode. The HMI subsystem is, therefore, a substantial contributor to the total power consumed by the device. Reducing the power consumption of the touch system can result in a substantial increase in the run-time between charges of the device.

Most wearable devices use the touch-sensing HMI as a typical method for waking up from a sleep state. These devices generally conserve power by entering a low-power touch detect function that operates it in a deep sleep mode. In this mode, the scanning takes place at a low refresh rate suitable for detecting any kind of touch event. In some devices, the user may be required to press and hold a button or tap the screen momentarily to wake the device.

In such cases, the power consumption optimization and the amount of power saved significantly depends on how slow it is possible to refresh the sensor. Therefore, it is always a tradeoff between a quick response to user touch and power consumption by the device. Moreover, touch HMI systems are notorious for the substantial amount of power they consume.

Commercial touch-sensing devices typically use microcontrollers. Their architecture mostly has a CPU with volatile and non-volatile memory support, an AFE or analog front-end to interface the touch-sensing element, digital logic functions, and I/Os.

The scanning operation typically involves CPU operation for initializing the touch-sensing system, configuring the sensing element, scanning the sensor, and processing the results to determine if a touch event has occurred.

In low-power mode, the device consumes less power as the refresh rate of the system reduces. This leads to fewer scans occurring each second, only just enough to detect if a touch event has occurred.

Shape-Changing Robot Travels Large Distances

The world of robotics is developing at a tremendous pace. We have biped robots that walk like humans do, fish robots that can swim underwater, and now we have a gliding robot that can travel large distances.

This unique and innovative robot that the engineers at the University of Washington have developed, is, in fact, a technical solution for collecting environmental data. Additionally, it is helpful in conducting atmospheric surveys as well. The astonishing part of this lightweight robotic device is that it is capable of gliding in midair without batteries.

The gliding robots cannot fly up by themselves. They ride on drones that carry them high up in the air. The drones then release them about 130 ft above the ground and they glide downwards. The design of these gliding robots is inspired by Origami, the Japanese art of folding paper to make various designs.

The highly efficient design of these gliding robots or micro-fliers as their designers call them can change shape when they are floating above the ground. As these robots or micro-fliers weigh only 400 milligrams, they are only about half the weight of a small nail.

According to their designers, the micro-fliers are very useful for environmental monitoring, as it is possible to deploy them in large numbers as wireless sensor networks monitoring the surrounding area.

To these micro-fliers, engineers have added an actuator that can operate without batteries and a controller that can initiate the alterations in its shape. They have also added a system for harvesting solar power.

When dropped from drones, the solar-powered micro-fliers change their shape dynamically as they glide down, spreading themselves as a leaf as they descend. The electromagnetic actuators built into these robots control their shape, changing them from a flat surface to a creased one.

According to their designers, using an origami shape allows the micro-fliers to change their shape, thereby opening up a new space for the design. Inspired by the geometric pattern in leaves, they have combined the Miura-ori fold of origami, with power-harvesting and miniature actuators. This has allowed the designers to make the micro-fliers mimic the flight of a leaf in midair.

As it starts to glide down, the micro-flier is in its unfolded flat state. It tumbles about like an elm leaf, moving chaotically in the wind. As it catches the sun’s rays, its actuators fold the robot, changing its airflow and allowing it to follow a more stable descent path, just like a maple leaf does. The design is highly energy efficient, there is no need for a battery, and the energy from the sun is enough.

Being lightweight, the micro-flier can travel large distances under light breeze conditions, covering distances about the size of a football field. The team showcased the functioning of the newly developed micro-flier prototypes by releasing them from drones at an altitude of about 40 meters above the ground.

During the testing, the released micro-fliers traveled nearly 98 meters after they changed their shapes dynamically. Moreover, they could successfully transmit data to Bluetooth devices that were about 60 meters away.

New Circuit Protection Technologies

A wide variety of vehicle models is entering the EV market these days. The demand is for decreased charging times and increased range. This is heightening not only the challenges towards electrical system performance but also towards better circuit protection.

For instance, decreasing the charging times requires systems using higher voltages and higher currents. This has necessitated the shift from the 400 V system to the 800 V, bringing with it major challenges to the design of circuit protection, especially on the battery side. That is because manufacturers must now consider increased fault currents that the protection components must handle.

With motor currents and power ramping up, circuit protection and switching devices also face higher stresses. They now need to withstand not only the higher operating currents but also the higher cycling requirements. Increased range means higher fault currents.

Therefore, circuit protection requirements are moving in several directions simultaneously. SiC MOSFET switches, acting as solid-state resettable transistor switches, address the high-voltage, low-current subsystems.

The power distribution box in the vehicle is still using the conventional system architecture of a coordinated fuse and contactor. Coordination between the two is necessary to ensure they cover the full range of possible faults from a range of underlying causes including different states of charge of the battery.

Another circuit protection technique is the pyrotechnic approach. This comes into play in events of a catastrophic nature, such as in crashes, when it is necessary to physically cut the busbar. These systems are mostly triggered by circuits that deploy the airbag and work to quickly isolate the battery from the rest of the vehicle. This helps to protect the driver, the passengers, and the first responders from fire and explosion from short circuits through the body of the vehicle.

The above are leading to the development of newer types of protection, such as with breaktors, fully coordinating circuit protection, and switching. Its design allows the breaktor to trigger passively or it can actively interrupt in case of power loss, thereby improving the functional safety of critical protection systems. Moreover, it has the ability to reset itself.

Another is an automotive precision bidirectional eFuse, which is increasingly becoming a common device in a vehicle. Traditional automotive fuses can be low in accuracy and slow to react. This can be a safety issue, as the safety of the system is indirectly proportional to the response time of a fuse. An eFuse not only has high accuracy but also a low response time, which increases the safety of the system.

However, there is a durability issue related to fuses and contactors that vehicle manufacturers use. The solution for this is the pyrotechnical switch. This is a protection device based on a trigger-able circuit similar to the functioning of an airbag. It produces a controlled explosion to sever a conducting busbar. Pyrotechnical switches, while solving the challenge of coordination, must rely on accurate triggering rather than on the passive reaction of fuses. Additional components are necessary to ensure a reliable triggering.

All the above protection systems require a trade-off between speed and durability. While a big fuse can be slow to operate, a smaller one may be faster but may suffer from a fatigue risk.

Stretch Your Battery

Although there is no existence of a stretchable phone or laptop at present, researchers have developed a prototype of a battery that is wearable and can be stretched. This stretchable Lithium-ion battery is fabric-based. With this type of battery, the team of researchers, from the University of Houston, has opened up a new direction for the future of wearable technology.

Professor Haleh Ardebili first came up with the idea for this stretchable Li-ion battery. He initially envisioned a future with smart, interactive, and powered clothes. From here, it was but a natural step to create stretchable batteries that could integrate with stretchable devices and clothes. For instance, one can use clothes with interactive sensors embedded in them to monitor their health.

Typically, batteries are in general rigid and are a major bottleneck in the wearable technology development of the future. Not only does the stiffness of a battery lead to limited functionality, but their use of liquid electrolytes raises safety concerns. Especially as the organic liquid electrolyte is flammable and prone to explosions. The researchers are using conductive fabric made of silver as the platform for the flexible battery and as the current collector.

The team prefers the woven sliver fabric for the battery, as it can easily deform mechanically by stretching, while still providing the necessary electrical conduction pathways for the electrodes of the battery to perform. The battery electrodes need to allow the movement of both ions and electrodes. With their experiments and prototypes, the researchers have entered to investigate an unexplored field in science and engineering. Going beyond the prototype, the researchers are working on optimizing the design of the battery, its fabrication, and its materials.

According to the researchers, the fabric-based stretchable battery will work wonders for various applications like smart space suits and devices for interacting with humans at a variety of levels, such as consumer electronic equipment embedded in garments for monitoring health. In fact, the applications for such a device are endless, providing a path for light, safe, flexible, and stretchable batteries. However, the team feels they have much to do before they can commercialize their idea.

While they need to work on the cost and scale for commercial viability, the team feels there is a clear need in the market for such batteries, especially in the future, for stretchable electronic devices. Once such products appear in the market, there will be a huge demand for the batteries. Right now, the team wants to make sure the batteries are as safe as possible.

The team faced many challenges in designing the stretchable battery. It took more than five years for them to reach the present state. Their main impediment was integrating the fabric with a functional battery.

As to how the battery works, the team explained that while the electro-chemically active material in the battery provides charge through bonding and debonding of lithium, it coats and deposits on the sliver stretchable fabric. While the lithium ions shuttle back and forth within the battery between the positive and negative electrodes, the battery can stretch as the polymer electrolyte and the fabric can also do so.

Matter and Simplicity Studio

So far, home automation has always meant selecting an appropriate ecosystem. Well, that is a thing of the past now, as all IoT or Internet of Things devices can intercommunicate with this new, open-source protocol. Now designers can develop small demo applications that are Matter-compatible, and they can use the new Matter Development board, the SparkFun Thing Plus, and the Simplicity Studio IDE from the Silicon Labs.

Until now, multiple communication protocols have kept IoT devices a rather scattered lot. Developers and consumers were forced to decide how to make their devices communicate and lock them into that environment. With the introduction of Matter, however, those are days of the past, as Matter is a unified, open-source application-layer connectivity standard. Apart from increasing the connectivity among connected home devices, Matter allows the building of reliable and secure ecosystems.

In 2019, major and competing players such as Zigbee Alliance, Google, Apple, Amazon, and a host of other companies such as Nordic Semiconductors got together to develop a single communication protocol. Their aim was to unify the entire world of the Internet of Things. The result was Matter, a royalty-free, open-source protocol that allows devices to communicate over Thread, Bluetooth Low Energy, and Wi-Fi networks. Therefore, Matter-certified devices can communicate with each other regardless of the wireless technology they use, and do so seamlessly.

Now, there is no need for consumers, manufacturers, and developers to have to choose between Google’s Weave, Amazon’s Alexa, or Apple’s Homekit components. While for consumers, this represents increased compatibility, for manufacturers, it means simplified development.

The major benefit of Matter is it simplifies the management and setup of smart home devices. End-users can now set up their smart home systems easily and quickly, using Matter-certified devices. They will not need any technical skills or specialized knowledge. With the protocol supporting end-to-end encryption, safety is in-built, ensuring secure data transmission between devices.

However, this does not mean designers have been relegated to the role of consumers. The Sparkfun Thing Plus Matter Development Board from Sparkfun Electronics combines Matter and the Sparkfun Qwiic ecosystem, thereby providing an agile development and prototyping arrangement for designers of Matter-based IoT devices.

Silicon Labs offers its MGM240P wireless module for a secure 802.15.4 connectivity for both Bluetooth Low Energy 5.3 and Mesh (Thread) protocols. This module is available and ready for integration into the Matter IoT protocol for home automation. Moreover, the Thing Plus development boards are compatible with Feather, and include a Qwiic connector, thereby allowing easy integration for solderless I2C circuits.

Designers can download the latest Simplicity Studio from the Silicon Labs website, for the specific operating system they are using. It may be necessary to create an account for the download. After installing and running Simplicity Studio for the first time, the Installation Manager will come up, and search for any updates available. After updating, the Simplicity Studio will operate as the latest version.

In the next step, the Installation Manager will ask to install the devices by either connecting them or by defining the technology they use. The Installation Manager may want to install additional required packages before proceeding.

Happy Thanksgiving!

To allow our hard-working office staff the ability to spend time with their families during Thanksgiving week, we are closing our office from Monday, November 20 – Friday, November 24. During this time, we will still be shipping orders but phones will not be answered and emails will not be responded to until Monday, November 27th.

We eagerly anticipate serving you again when we reopen on Monday morning, November 27, ready to assist with your electronic component needs. Wishing you a joyous and peaceful Thanksgiving!

West Florida Components Thanksgiving week office hours

Software Defined Electric Vehicles

Around the world, SDVs or software-defined vehicles are one of the two trends driving the design of new vehicles, the other being EVs or electric vehicles. As a result, vehicle design is undergoing a major transformation. From features and capabilities that were so far defined by hardware, they are now changing over to those being defined by software. This opens up newer opportunities resulting in agile developments, fast and continual improvements, and remote maintenance.

SDVs are ushering in a new approach to the development of vehicles. In turn, that is enabling improvements in the vehicle over time, based on in-depth access to the vehicular data in real time. Cloud processing and machine-learning training is leading to updates over the air for improving the software and related machine-learning models. Along with this continuous deployment and integration, engineers are able to use model-based design tools more effectively for improving and developing software algorithms that, in turn, help to run the vehicles more efficiently.

As a result, carmakers over the world are investing hugely in vehicle electrification for helping to reduce greenhouse gases. They are offering their customers vehicles with acceptable driving ranges along with easy access to charging stations. Many are committing to transitioning their fleets from ICE or internal combustion engines to EVs over the next decades. This is resulting in the swift deployment of EVs. Furthermore, the effect of this shift to a more software-centric and electric future is bringing newer challenges to the automobile industry.

The major beneficiary of this change is the EV motor. With the industry moving to the SDV approach, there is faster access to vehicular data that can monitor the aging and performance of the EV motor. Powerful automotive microcontrollers now support newer features over time, while the deployment of software upgrades is available through wireless updates. This makes the software-defined EV motor a dynamic product that keeps evolving and improving over time. It takes advantage of in-vehicle data in real-time, supporting cloud development along with enhancing features.

Changing over to a software-defined EV motor design affects all the stages of development of the control systems of the EV motor. Not only does this enable faster cycles of development, but also helps enhance the performance, while monitoring for maintenance needs, thereby extending the system’s lifetime.

High-level modeling tools are the trend in motor control design. Designers use modeling tools like Simulink and MATLAB for concentrating on using their key expertise in controlling the EV motor and systems, rather than on programming. This is because modeling tools operate at the algorithm level, where the designers can optimize them to improve vehicular performance and efficiency.

Using modeling tools results in three significant advantages—flexibility, safety, and speed. Designers use modeling tools to test algorithms and quickly analyze software, rather than depend on evaluation through hardware integration. Not only does this bring in flexibility, but also speed when designing the control module of EV motors. For designers, developing at the algorithm level is especially useful when developing strategies for the smooth control of a motor.

Modular Machine Vision

As the AI or Artificial Intelligence scenario changes, in most cases, too fast, industrial vision systems must follow suit. These involve the automated quality inspection systems of today and the autonomous robots of the future.

Whether you are an OEM or Original Equipment Manufacturer, a systems integrator, or a factory operator, trying to get the maximum performance out of a machine vision system requires future-proofing your platform. This is necessary so that you can overcome the anxiety of having launched a design only months or weeks before the introduction of the next game-changing architecture or AI algorithm.

Traditionally, the industrial machine vision system is made up of an optical sensor like a camera, lighting for illuminating the area to be captured, a controller or a host PC, and a frame grabber. In this chain, the frame grabber is of particular interest. This device captures still images at a higher resolution than the camera can. High-resolution images simplify the analysis, whether by computer vision algorithms or by AI or artificial intelligence.

The optical sensor or camera connects directly to the frame grabber over specific interfaces. The frame grabber is typically a slot card plugged into the vision platform or PC. It communicates with the host over a PCI Express bus.

Apart from its ability to capture high-resolution images, the frame grabber also has the ability to trigger and synchronize multiple cameras simultaneously. It can also perform local image processing, including color corrections, as soon as it has captured a still shot. While eliminating latency, it also eliminates the cost of transmitting images to the cloud for preprocessing, while freeing the host processor for running inferencing algorithms, executing corresponding control functions, and other tasks like turning off lights and conveyor belts.

Although the above architecture makes the arrangement more complex than some newer types that integrate various subsystems in the chain, it is much more scalable. It also provides a higher degree of flexibility, as the amount of image-processing performance achieved is limited only by the number of slots available in the host PC.

However, machine vision systems relying on high-resolution image sensors and multiple cameras can face a problem with system bandwidth. For instance, a 4MP camera needs a throughput of about 24 Mbps. PCIe 3.0 interconnects offer roughly 1 Gbps per lane data rate.

On the other hand, Gen4 PCIe interfaces double this bandwidth to almost 2 Gbps per lane. Therefore, you can connect twice as many video channels on your platform without making any other sacrifices.

However, multiple camera systems ingesting multiple streams can consume bandwidth rather quickly. Suppose you are adding one or more FPGA acceleration or GPU cards for higher accuracy, and low latency AI or executing computer vision algorithms. In that case, you have a potential bandwidth bottleneck on your hands.

Therefore, many industrial machine vision integrators make tradeoffs. They may add more host CPU to accommodate the shortage of bandwidth, use a backplane-based system to make the accelerating cards play a bigger role, or change over to a host PC with integrated accelerators. Regardless, the arrangement adds significant cost and increases power consumption and thermal dissipation. Modularizing your system architecture can safeguard against this.

Future Factories with 5G

The world is moving fast. If you are a manufacturer still using Industry 3.0 today, you must move your shop floor forward to Industry 4.0 for being relevant tomorrow, and plan for Industry 5.0, for being around next week. 5G may be the answer to how you should make the changes to move forward.

There has been a sea of changes in technology, for instance, manufacturing uses edge computing now, and the advent of the Internet of Things has led to the evolution.

At present, we are in the digital transformation era, or Industry 4.0. People call it by different names like intelligent industry, factory of the future, or smart factory. These terms indicate that we are using a data-oriented approach. However, it is also necessary to collaborate with the manufacturing foundation. This approach is the Golden Triangle, based on three main systems—PLM or Product Lifecycle Management, MES or Manufacturing Execution Systems, and ERP or Enterprise Resource Planning.

With IoT, there is an impact on the manufacturing process, depending on the data collected in real-time, and its analytics. Of course, it complements existing systems that are more oriented to the process. Therefore, rather than replace, IoT actually complements and collaborates with the existing systems that help the manufacturer to manage the shop floor.

IoT is one of the major driving factors behind the movement that we know as Industry 4.0. One of its key points is to enable massive automation. This requires data collection from the shop floor and moving it to the cloud. On the other end, it will need advanced analytics. This is necessary to optimize the workflow and processes that the manufacturer uses. After the lean strategy, there will be a kind of lean software, acting as one more step towards process optimization within the company and on the shop floor.

However, manufacturers will face several challenges as they grow and scale up their IoT initiatives. These will include automation, flexibility, and sustainability. Of these, automation is already the key topic in the market—the integration of technologies to automate the various manufacturing processes.

The next in line is flexibility. For instance, if you are manufacturing a product in a line, it takes a long time to change that line for making another product.

The last challenge is rather vast. Sustainability means making manufacturing cost-effective by improving the processes and the efficiency of the equipment. It may be necessary to minimize energy consumption, and decrease lead time and manufacturing time. It may involve using less material and reducing wastage.

With the advent of 5G, manufacturers will be witnessing many new and exciting possibilities. The IoT of today has two game-changers that will affect the IoT of the future. The first game-changer is 5G, while edge technology is the other. Ten years ago, IoT was only a few devices sending data to the cloud for human interaction and analytics.

Now, there has been a substantial increase in the number of devices deployed and the amount of data traffic. In fact, with the humongous increase of data, many a time, it is not possible to send everything to the cloud. While 5G helps with the massive transfer of data, edge computing helps standardize the data and compute it locally, before the transfer.

Solid State Active Cooling

Computex is a US startup that has developed a new cooling device. They call this an active solid-state cooling device, and it is very nearly the size of a regular SD card. It uses a variety of techniques to remove heat from small enclosed spaces. Made by Frore Systems, the new active solid-state cooling device is named AirJet.

Very close to the size of an SD card, about 2.8 x 27.5 x 41.5 mm, AirJet has tiny membranes vibrating at ultrasonic frequencies. According to Frore Systems, the membranes generate a strong airflow entering AirJet through inlet vents at its top. Inside the device, this airflow changes into high-velocity pulsating jets. AirJet further directs the air past a heat spreader at its base. As the air passes through AirJet, it acquires some heat from the device and carries it away as it moves out. According to Frore, the AirJet consumes only a single watt to operate, while moving 5.25 W worth of heat.

Although not very explicit, Frore’s explanation of the working mechanism says they made the vibrating membranes with techniques similar to those necessary for the production of screens and semiconductors. This is the reason for describing the device, as a solid-state cooler. Moreover, some workings of the AirJet are inspired by engineers’ methods to cool jet engine components.

At the Computex 2023 exhibition, Frore announced that their first customer for AirJet would be Zotac of Hong Kong. They will use it on their mini PC, which uses 8GB of RAM and an Intel i3 core inside a chassis measuring only 115 x 76 x 22 mm, slightly larger than a pack of playing cards.

According to Frore, they have designed AirJet specifically for tightly-packed devices with a lower number of CPUs and using passive heat management to cool. With a tiny active cooling device like AirJet, designers can contain the heat powerful components generate, or run more CUP cores at higher capacity for longer.

Frore’s prime targets are tablet computers and fanless laptops. Their demo device had a digital doorbell with an AirJet retrofitted. With this cooler running, they can enhance the processing of AI-infused video on the device.

Frore also have a professional model of the AirJet, and they predict it can move 10 watts of heat in advanced iterations. They also estimate they can double AirJet’s performance with each iteration, but for the time being, AirJet is unlikely to have adequate capacity to cool a server.

On the other hand, Frore envisages the role of cooling SSDs and similar memories for AirJet. This will likely work well for SSDs running hot, and CXL or Compute Express Link’s rising memory pooling. Therefore, they are considering having AirJets on SSDs for cooling arrays, and on other memory packages.

One limiting factor for AirJet is its need for air intake. However, Frore confidently claims AirJet can defeat dust. They do not claim the technology is waterproof, so application on smartphones is not under consideration, at least for now. But PCs can now chase the idea of no moving parts.