Can capacitors act as a replacement for batteries?

It is common knowledge that capacitors store electrical energy. One could infer that this energy could be extracted and used in much the same way as a battery. Why can capacitors then not replace batteries?

Conventional capacitors discharge rapidly, whereas batteries discharge slowly as required for most electrical loads. A new type of capacitors with capacitances of the order of 1 Farad or higher, called Supercapacitors:

• Are capable of storing electrical energy, much like batteries
• Can be discharged gradually, similar to batteries
• Recharged rapidly – in seconds rather than hours (batteries need hours to recharge)
• Can be recharged again and again, without degradation (batteries have a limited life and hold increasingly lower charge with age, until they can be recharged no longer)

The Supercapacitor would thus appear to be one up on the batteries in terms of performance and longevity, and some more research could actually lead to a viable alternative to conventional fuel for automobiles. It is this concept that created the hybrid, fuel-efficient cars.

However, let us not jump to conclusions without considering all the aspects. For one, the research required to refine this technology would be both time and cost intensive. The outcome must justify the efforts in terms of both time and cost. The negatives must be carefully weighed against the advantages enumerated above, some of which are:

• Supercapacitors’ energy density (Watt-hours per kg) is much lower compared to batteries, leading to gigantically sized capacitors
• For quick charging, one would need to apply very high voltages and/or currents. As an illustration, charging a 100KWH battery in 10 seconds would need a 500V supply with a current of 72,000 Amps. This would be a challenge for safety, besides needing huge cables with solid insulation, along with a stout structure for support
• The sheer size of the charging infrastructure would call for robotic systems, a cumbersome and expensive set up. The cost and complexity of its operation and maintenance at multiple locations could defeat its purpose
• Primary power to enable the stations to function may not be available at remote locations.
Many prefer to opt for the traditional “battery bank” instead. The major problem of lead acid battery banks is the phenomenal hike in the cost of lead and the use of corrosive acid. Warm climates accelerate the chemical degradation leading to a shorter battery life.

A better solution, as often advocated, is to use a century-old technology in which nickel-iron (NiFe) batteries were used. These batteries need minimal maintenance, where the electrolyte, a non-corrosive and safe lithium compound, has to be changed once every 12-15 years. To charge fully, it is preferable to charge NiFe batteries using a capacitor bank in parallel with the bank rather than charging with a lead-acid-battery charger.

Though NiFe batteries are typically up to one and a half times more expensive, lower maintenance cost more than offsets the same over its lifetime.

To summarize, the Supercapacitor technology would still have to evolve in a big way before actually replacing batteries although the former offers a promising alternative to batteries.

image courtesy of