Raspberry Pi and the Intel Edison

The Intel Edison is an extremely small computing platform suitable for embedded electronics. Intel has packed the Edison with many technical goodies within its tiny package. That makes it a robust single board computer, powered by the Atom SoC dual-core CPU. It includes an integrated Bluetooth LE, Wi-Fi and a 70-pin connector. A huge number of shield-like blocks are available to stack on top of each other on this connector.

Do not be misled by its small size, as the Edison packs a robust set of features within the tiny size. It has a broad spectrum of software support, along with large numbers of IO, delivering great performance with durability. Its versatile features are a great benefit to beginners, makers and inventors. The high-speed processor, Wi-Fi and Bluetooth radio on board makes it ideal for projects that need low power, small footprint but high processing power. These features make the Edison SBC suitable for those who cannot use a large footprint and are not near a larger power source.

In addition, the Intel Edison Mini Breakout exposes the native 1.8V IO of the Intel Edison module. On this board is a power supply, a battery charger, USB OTG power switch, USB OTG port, UART to USB Bridge and an IO header.

So, how does the Intel Edison SBC compare with the RBPi or the Raspberry Pi SBC? The first question that comes to mind when starting a comparison between the two is the lack of a USB port on the Edison to plug in the keyboard and mouse. Compared to the RBPi, the Edison also lacks video output, has low processor speed, higher cost and it is not possible to use the IO connector without an extra board.

Although Intel claims it as an SBC, unlike the RBPi, the Edison is a module meant for deeply embedded IoT computing. On the other hand, the RBPi has always been a low-cost computing terminal to be used as a teaching tool. That the RBPi platform also has hardware hack-ability is a bonus feature and purely incidental.

The Edison, a deeply embedded IoT computing platform, does not have video output because usually, Wi-Fi enabled robots do not need video. Since wearables do not need keyboard and mouse, the Edison does not have a USB port. To keep power consumption on the low side for portable applications, Intel has deliberately kept the processor speed low.

Although the Edison is comparatively higher-priced as compared to the RBPi, the difference is lower when you add the cost of an SD card, a Wi-Fi card and a Bluetooth dongle to that of the RBPi. Not only does the Edison integrate all this, it is more of a bare ARM A9 or A11 SoC that can be integrated easily into a product.

Finally, three things need highlighting. The Edison has a Quark micro-controller; it operates at 1.8V and is very small. The RBPi, without the addition of the communication modules, occupies about 93 cubic centimeters, whereas the Edison and its breakout board together require only 14. The RBPi requires about 48 square centimeters of footprint, while the Edison needs only 17.