Raspberry Pi for the Solar Plant Monitoring System

In an effort to go green, solar energy is proving to be the forerunner. Collecting energy from the sun requires photovoltaic cells that convert the solar energy directly into the usable electrical form. Even computers are getting smaller and using less energy than before. As a result, several companies are building commercial products based on SBCs or Single Board Computers such as the hackable Raspberry Pi, or the RBPi.

For example, Storm Energy is a Germany-based firm designing the SunSniffer system that monitors photovoltaic solar power installations or all sizes. According to the company, their latest version is capable of even controlling the equipment. They have enhanced the flexibility and upgradability of their system by adding an RBPi SBC running a customized Linux OS, along with a customized expansion board.

Users can utilize the SunSniffer system and its backend software for monitoring and controlling solar equipment at the system, string and module levels. According to Storm Energy, use of the system enhances the system efficiency by more than 7 percent, as it enables monitoring temperature, cable power loss, interconnection bandwidth and many more functions that are important. An included iPhone application or SMS allows the SunSniffer system to present reports online, as well as on mobile devices.

The open Linux platform is the chief attraction for the company to select an RBPi for its proprietary SunSniffer solar plant monitoring system. According to Storm Energy, using Linux has brought it maximum upgradability for SunSniffer. The Google translation of their website indicates that the company is able to make necessary changes and adjustments most economically because of Linux.

Storm Energy uses a Radio Ripple Control Receiver to turn on/off their solar inverters. This is an addition to simply monitoring their data. That gives them support for real-time reduction of their system’s performance for compensation just as the market premium models do. Apart from the system supporting meter readings, which are useful for solar-powered apartment buildings, the system also has SSL encryption to support future requirements complying with BSI Smart Meter Gateway.

Users can opt for additional integrated anti-theft protection on the SunSniffer. It includes features such as an emergency shutdown system and nighttime surveillance. According to the company, using the RBPi enables integration of cameras for optically monitoring the PV system with up to 1920×1080 pixels at 30 frames per second.

Just like any other conventional power station, constant monitoring of solar installations is necessary, since a solar plant is as prone to errors as with any other technical system. That includes pollution from soot, accumulation of dust and flower pollen. Usually, these form a thin layer on the surface of the modules, preventing sunlight from reaching the solar cells.

In addition, there can be damage such as glass breakage because of extreme temperature fluctuations, high snow loads, hail, swarms of birds soiling the modules and martens biting through cables. Moreover, there can be manufacturing defects such as joints becoming brittle leading to hot sports. Installation errors can include incorrect sorting of modules and forgotten plug connections leading to losses, and perilous electric arcs, etc. SunSniffer detects such errors and malfunctions quickly, enabling an increase in system efficiency.