Tag Archives: fiber optics

Specifying Fiber Optic Sensors

The industry prefers fiber optic sensors as they work well in tight spots and in applications that have a high degree of electrical noise. Fiber optic sensors are useful in machines, fixtures, and conveyors for sensing part presence as an important component of industrial automation. The industry often requires controlling sequence and error-proofing assembly based on the presence or absence of a part. In many cases, it is simply impossible to know whether a part is where it should be or the holder is empty as expected. Therefore, verification is only possible by using a presence sensor.

Sensors come in many varieties, including magnetic, capacitive, inductive, and photoelectric. Depending on the application, each type of sensor has its own merits and demerits. Among all the sensors available in the market, photoelectric sensors offer the broadest types and technologies, and suitable for the widest range of applications.

The family of photoelectric sensors includes a large variety of light-emission types that includes lasers of class 1 and 2, visible, and infrared. They also include different sensing technologies such as through-beam, reflective, suppression, background, and diffuse. Different housing configurations are also available such as fiber optics and photo eye. We will focus on specifying and applying fiber-optic sensors, as these offer the most advanced capabilities with options for configuration, and are most suitable for use in tight spots that the photo-eye sensor finds too small.

Fiber-optic sensors are also known as fiber photoelectric sensors, and comprise of two parts—the amplifier and the fiber cable. The amplifier is the electronic part and is actually a fiber photoelectric amplifier. The fiber-optic cable includes the optic sensor head and the fiber cable to transmit light to and from the amplifier.

All photoelectric sensors work with a simple technique. A light emitter produces the source signal and a receiver detects the signal. A large variety of technologies is available for sensing and measuring the light transmitted to the receiver. For instance, standard photo-eyes look for the presence or absence of light, whereas background suppression sensors sense the angle of the returning beam. Other type of sensors measure the time taken by the light to return, thereby providing a measure of distance it traveled.

Simple photo-eyes such as those used in reflective and diffuse units house the emitter and receiver in the same optical sensor head, while through-beam units house them in two optical sensor heads. On the other hand, fiber-optic sensors have all the electronics in a single housing, with a fiber cable connecting the separate emitter and receiver to the electronic housing. Light from the emitters and that coming to the receivers travels through the fiber cables, similar to high-speed data traveling through fiber-optic networks.

The above segregation means the technician has to mount only the sensor head on the machine, while routing the integrated fiber-optic cable and plugging it into the amplifier placed in a safe place such as a control enclosure to protect it from the harsh manufacturing environment.

A large variety of options is available for both fiber-optic cables and amplifiers. These range from basic to advanced, suitable for meeting the demands of increasing functionality, including advanced logic and communication capabilities.

How do fiber optic cables carry light?

Nowadays, nearly everyone is talking about fiber-optic cables. These cables are now commonly used in telephone systems, cable TV systems and the Internet. One of the main advantages with optics cables is their huge bandwidth. That means fiber optics cables can carry far more signals than copper wires can. Usually made of optically pure glass, these cables are very thin – nearly as thin as human hair. Because of their high signal carrying capacity, optical fiber cables are also used for mechanical engineering inspection and in medical imaging. Optical fiber cables are made of long, thin strands of extremely pure glass. With a diameter close to that of human hair, several strands are bundled together, to form cables that are used to transmit light signals over long distances. When examined closely, each single fiber can be seen to consist of three parts.

The central core of the fiber is made of glass and this is where the light travels. The core is covered with a cladding, which effectively reflects light back into the core. The core is surrounded by a buffer coating, mainly for protecting the fiber from moisture ingress and physical damage. Optical cables contain hundreds or even thousands of such optical fibers arranged in bundles. On the outside, a jacket, also called the cable’s outer covering, protects the cable.
In general, there are two major types of optical fibers – single-mode and multi-mode. With a small core of about 9 microns in diameter, single-mode fibers can transmit infrared laser light having wavelengths of 1,300 to 1550 nanometers. On the other hand, multi-mode fibers have core diameters of about 62.5 microns, capable of transmitting infrared light of wavelengths from 850 to 1300 nanometers.

Other types of optical fibers can be made of plastic as well. These usually have a larger core of about 1 mm diameter, capable of transmitting visible red light of wavelength 650 nm, such as from LEDs.

Light always travels in straight lines. This is easily seen when a flashlight beam is shown down a straight long hallway. You can see the entire length of the hallway until the next bend, but beyond which nothing is visible. However, placing a mirror at the corner will allow you to see round the bend. This is possible because light from around the bend strikes the mirror and reflects down the hallway. If the hallway were to be very winding with multiple bends, lining the walls with mirrors will help. Light bounces from side-to-side and travels down the hallway making the entire path visible. This is exactly how an optical fiber works.

Light travels through the core of the fiber-optic cable, constantly bouncing off the cladding. This follows a well-known principle of optics known as total internal reflection. Very little light is lost in total internal reflection from the cladding, allowing light to travel long distances within the cable.

Although the core is made from optically pure glass, some impurities remain. These degrade the light signal as it travels down the core. The extent of signal degradation depends both on the impurities present in the glass used for the core and the wavelength of the light traveling through it.