Tag Archives: ML

What is Industrial Ethernet?

Earlier, we had a paradigm shift in the industry related to manufacturing. This was Industry 3.0, and, based on information technology, it boosted automation, enhanced productivity, improved precision, and allowed higher flexibility. Today, we are at the foothills of Industry 4.0, with ML or machine language, M2M or machine-to-machine communication, and smart technology like AI or artificial intelligence. There is a major difference between the two. While Industry 3.0 offered information to humans, allowing them to make better decisions, Industry 4.0 offers digital information to optimize processes, mostly without human intervention.

With Industry 4.0, it is possible to link the design office directly to the manufacturing floor. For instance, using M2M communications, CAD, or computer aided design can communicate directly to machine tools, thereby programming them to make the necessary parts. Similarly, machine tools can also provide feedback to CAD, sending information about challenges in the production process, such that CAD can modify them suitably for easier fabrication.

Manufacturers use the Industrial Internet or IIoT, the Industrial Internet of Things, to build their Industry 4.0 solutions. The network has an important role like forming feedback loops. This allows sensors to monitor processes in real-time, and the data thus collected can effectively control and enhance the operation of the machine.

However, it is not simple to implement IIoT. One of the biggest challenges is the cost of investment. But this investment can be justified through better design and manufacturing processes leading to cost savings through increased productivity and fewer product failures. In fact, reducing capital outflows is one way to accelerate adoption of Industry 4.0. Another way could be to use a relatively inexpensive but proven and accessible communication technology, like the Ethernet.

Ethernet is one of the wired networking options that is in wide use all over the world. It has good IP interoperability and huge vendor support. Moreover, POE or power over internet uses the same set of cables for carrying data as well as power to connected cameras, actuators, and sensors.

Industrial Ethernet, using rugged cables and connectors, builds on the consumer version of the Ethernet, thereby bringing a mature and proven technology to industrial automation. With the implementation of Industrial Ethernet, it is possible to not only transport vital information or data, but also remotely supervise machines, controllers, and PLCs on the shop floor.

Standard Ethernet protocol has high latency, mainly due to its tendency to lose packets. This makes it unsuitable for rapidly moving assembly lines that must run in synchronization. On the other hand, Industrial Ethernet hardware uses deterministic and low-latency industrial protocols, like PROFINET, Modbus TCP, and Ethernet/IP.

For Industrial Ethernet deployment, the industry uses hardened versions of the CAT 5e cable. For instance, the Gigabit Ethernet uses CAT 6 cable. For instance, the CAT 5e cable has eight wires formed into four twisted pairs. This twisting limits cross talk and signal interference, and each pair supports a duplex connection. Gigabit Ethernet, being a high-speed system, uses all four pairs for carrying data. For lower throughput, systems can use two twisted pairs, and the other two for carrying power or for conventional phone service.

What are Olfactory Sensors?

We depend on our five senses to help us understand the world around us. Each of the five senses—touch, sight, smell, hearing, and taste—contributes individual information to our brains, which then combines them to create a better understanding of our environment.

Today, with the help of technology like ML, or machine learning, and AI, or Artificial Intelligence, we can make complex decisions with ease. ML and AI also empower machines to better understand their surroundings. Equipping them with sensors only augments their information-gathering capabilities.

So far, most sensory devices, like proximity and light-based ones, remain limited as they need clear physical contact or line of sight to function correctly. However, with today’s technology trending towards higher complexity, it is difficult to rely solely on simple sensing technology.

Olfaction, or the sense of smell, functions by chemically analyzing low concentrations of molecules suspended in the air. The biological nose has receptors for this activity, which, on encountering these molecules, transmit signals to the parts of the brain that are responsible for the detection of smell. A higher concentration of receptors means higher olfaction sensitivity, and this varies between species. For instance, compared to the human nose, a dog’s nose is far more sensitive, allowing a dog to identify chemical compounds that humans cannot notice.

Humans have recognized this superior olfactory ability in dogs and put it to various tasks. One advantage of olfaction over that of sight is the former does not rely on line-of-sight for detection. It is possible to detect odors from unseen objects, which may be obscured, hidden from sight, or simply not visible. That means the olfactory sensor technology can work without requiring invasive procedures. That makes olfactory sensors ideally suited for a range of applications.

With advanced technology, scientists have developed artificial smell sensors to mimic this extraordinary natural ability. The sensors can analyze chemical signatures in the air, and thereby unlock newer levels of safety, efficiency, and early detection in places like the doctor’s office, factory floors, and airports.

The healthcare industry holds the most exciting applications for olfactory sensors. This is because medical technology depends on early diagnosis to provide the most effective clinical outcomes to patients. Conditions like diabetes and cancer cause detectable olfactory changes in the body’s chemistry. Using olfactory sensors to detect the changes in body odor, with their non-invasive nature, provides a critical early diagnosis that can significantly improve the chances of effective treatment and recovery.

The industry is also adopting olfactory sensors. Industrial processes often produce hazardous byproducts. With olfactory sensors around, it is easy to monitor chemical conditions in the air and highlight the buildup of harmful gases that can be dangerous beyond a certain level.

As the sense of smell does not require physical contact, it is ideal for detection in large spaces. For instance, olfactory sensors are ideal for airport security, where they can collect information about passengers and their belongings as they pass by. All they need is a database of chemical signatures along with processing power to analyze many samples in real-time.