Tag Archives: PiCoolFan

Cool your Raspberry Pi with PiCoolFan

Applications for the single board computer, the Raspberry Pi or RBPi are exponentially increasing and there is a great demand on the RBPI for extending its performance to the limits. While users try to push their RBPi to achieve higher results with overclocking, this may result in SBC frying itself, unless the CPU temperature is kept in check.

To enable complete control over the CPU temperature, an advanced cooling fan system is available – PiCoolFan. On the bonus side, the system also includes a Real Time Clock that RBPi does not have in-built. Therefore, if your RBPi is running hot, for whatever reasons, you can use the PiCoolFan to keep its CPU cool. The applicability extends to all models of the RBPi.

The cooling fan does not require any additional power supply to operate. It draws its power from two GPIO pins. You simply have to insert the connector on the PiCoolFan on top of the P1 connector of the RBPi. A dedicated sensor on the PiCoolFan continuously senses the PCB temperature of the RBPi, feeding the readings to an embedded temperature measurement system on the PiCoolFan. Depending on the measured temperature, the micro-controller on-board the PiCoolFan will start, stop or regulate the rotational speed of the tiny fan.

As an added advantage, PiCoolFan contains an Air Distribution Plate, which cools not only the microprocessor on the RBPi board, but also all the heat-generating devices and the entire RBPi PCB. The RBPi user can easily access the embedded micro-controller on the PiCoolFan via the I2C interface. Apart from being able to read the temperature measured, the user can also set the temperature threshold and the temperatures at which the micro-fan will start and stop.

The PiCoolFan also offers on the same board a real time powering voltage monitoring and a real time clock with full battery backup. The entire unit is small enough to be included within most of the already existing cases of the RBPi. Apart from reading the temperature via I2C interface, PiCoolFan offers the user an information system based on three LEDs. A glowing blue LED assures the user the RBPi is comfortably within the allowed operating temperature range. If the temperature exceeds the range, the red LED will start to glow.

A flashing green LED indicates the powering status. When the voltage is within threshold limits, the flashes are continuous. When higher than the threshold, the frequency of the flashes increases. If the voltage is below the threshold limit, the frequency of the flashes decreases. Therefore, with a transparent case, it is easy to see from a distance whether the temperature and voltage of the RBPi system is within specified limits.

The user has complete control over the PiCoolFan system via the I2C interface. The fan can be switched on or off unconditionally and its speed controlled by pulse width modulation or PWM. The user can read the current system temperature and set the temperature threshold – PiCoolFan supports both the Celsius and the Fahrenheit scales. The PiCoolFan kit contains all the hardware necessary for setting up the fan and the air distribution plate.