Tag Archives: V2G Technology

Types of EV Connectivity

Technologies related to EVs or electric vehicles are undergoing enormous research and development efforts with the ultimate aim of achieving widespread EV adoption. Although at present, extending the driving range is occupying much of the direction of this effort, future benefits will ultimately extend beyond progressive battery and charging technologies.

For instance, for future EVs, there are exciting value propositions like the number of different connectivity technologies they will be featuring. This is the V2X or vehicle-to-everything connectivity that includes in-use technology like V2G or vehicle-to-grid, V2N or vehicle-to-network connectivity, and the emerging technology like V2V or vehicle-to-vehicle, which engineers expect will change the future working of EVs.

The recent production of EVs includes V2G or vehicle-to-grid connectivity. This refers to the EV’s ability to allow electricity to flow bidirectionally from the vehicle to the grid and back. The concept is that the batteries in the EV, being relatively large, can not only act as energy storage for the vehicle but also as energy storage for the grid and as V2H, energy storage for the home.

V2G, therefore, relies on a power electronics technology, bidirectional charging. Such an EV requires a versatile power conversion and control circuit, allowing conversion between the AC of the grid and the DC of the battery. There are innumerable benefits of V2G for both the vehicle owner and the grid.

The owner can use the EV not only as a vehicle but also as a backup generator for home use in case of a disaster like a blackout. The vehicle owner can offset their cost by selling excess energy in their EV to the grid.

For the infrastructure of the grid, V2G technology can supplement the grid stress when the demand is at its peak. During low demands, or when the energy generation is higher, the grid can recharge the EV.

V2N is another type of EV connectivity, and it refers to the ability of the vehicle to connect to the Internet and communicate with anything else on the network. This mostly refers to the vehicle connecting to the internal network and cloud service of its manufacturer. This allows the manufacturer to closely monitor the vehicle, update it dynamically, and thereby, ensure maximum performance.

Companies use V2N connectivity for extracting information related to performance from their vehicles. They gather metrics such as battery charge cycles, energy throughput, and range. With such feedback information from all vehicles connected to the V2N network, EV manufacturers conduct statistical analysis for understanding the real-time operating conditions of their vehicles and improve their performance. V2N-connected vehicles can also receive necessary updates for their software and firmware for introducing performance improvements.

However, V2V connectivity will bring the biggest impact of all these, although, currently it is far from being a reality. This connectivity is the interconnection of all connected vehicles on the road. V2V allows all vehicles to wirelessly communicate between themselves, information like position, speed, road conditions, and other important driving information. V2V-enabled vehicles can also share real-time road and traffic condition information for achieving the optimal path to their destination.