Tag Archives: Waspmote

How Smart Sensor Technology helps Beehives

Plants are necessary for life on the planet Earth, as they transform the gas Carbon-Di-Oxide that animals exhale into life-sustaining Oxygen. Plants, in turn, depend largely on bees to pollinate their flowers and propagate thereby. That makes honey bees a keystone species, which humans have recognized throughout history. Bees help to pollinate nearly 70% of all plants on earth assuring about 30% of the global food supply. That makes bees a predictor of our planet’s future health.

Global warning has brought with it an alarming rise in the growth rates of damaging pathogens such as fungi, viruses and mites. At the same time, there has been a serious disrupt in the natural rhythms that the bee population had adapted over centuries of consistent seasonal weather patterns. Crop production is infested with pesticides, which bees ingest and transmit back to their hives during pollination. This often leads to a total collapse of colonies. Electromagnetic radiation level in the atmosphere is rising with the exponential growth of cell phones and wireless communication towers. This interferes with the ability of the bees to navigate in flight.

All the above has made it imperative for scientists to monitor the activity of honey bees within their hives in the daytime as well as at night including during inclement weather. At the University College of Cork in Ireland, a group of food business, embedded systems engineering and biology students have recently taken up the challenge. They have developed a unique platform for monitoring, collecting and analyzing activity of bees within the colonies unobtrusively.

The project Smart Beehive has earned top honors in the Smarter Planet Challenge 2014 of IEEE/IBM. Using mobile technology, the project deploys big data, wireless sensor networks and cloud computing for recording and uploading encrypted data.

Waspmote is a modular hardware sensor platform. Libelium has developed Waspmote for any sensor network and wireless technology to connect to any cloud platform. The UCC team of students has used Waspmote as their starting point along with integrated hive condition and gas sensors. They have used ZigBee radios, GSM and 3G communications to study the impact of oxygen, carbon dioxide, humidity, temperature, airborne dust levels and chemical pollutants on the honey bees. The students captured data from initial observations in two scientific papers and three invention disclosures.

According to the famous physicist Albert Einstein, man can survive only for four years on earth if there were no bees left. Smart technology can integrate beehive sensors and analyze the data they collect. Therefore, such platforms play a critical role not only in ensuring continuation of pollination, but also in ultimately monitoring, understanding and managing the precious global resources as well.

The Plug & Sense! Technology from the Libelium Waspmote wireless sensor platform offers the use of a wide range of sensors, integrating more than 70 of them at a time. It can adapt to any scenario of monitoring with wireless sensors such as water quality, vineyard monitoring, livestock tracking, irrigation control, air and noise pollution, etc.

Outdoor deployment is possible because of the waterproof enclosures used by Plug & Sense! Moreover, using solar panels, the honeybee project has the ability to harvest energy.

Waspmote Plug & Sense! : Solar-Powered Wireless Sensor Platforms

Today, we use sensors for a myriad of activities such as intrusion detection, fall detection, patient surveillance, art and goods preservation, offspring care, animal tracking, selective irrigation, and many more. Where the sensor network has to operate outdoors, what can be a better way of powering them other than through solar means?

Using an external or internal solar panel, one can safely recharge batteries for the system. For external solar panels, the panel is usually mounted on a holder tilted at a suitable angle ensuring the maximum performance of the outdoor installation. When space is a major challenge, such as indoors, the solar panel can be embedded on the front of the enclosure. Typical rechargeable batteries used for powering loads are rated 6600mAh, and this ensures the sensors do not stop working even when the sun is not providing adequate light.

Such platforms of wireless sensor networks provide solutions for Smart Cities. Waspmote Plug & Sense! from Libelium is a system of encapsulated wireless sensor devices that allow system integrators to implement modular wireless sensor networks in a scalable manner. The Libelium system reduces the installation from days to just hours.

Each node of a Waspmote Plug & Sense! comes with six connectors. You can connect sensor probes to these connectors directly and the system is ready to install and easy to deploy. Using connectors ensures that the services remain scalable and sustainable. The possibility of powering the platform through solar power allows energy harvesting and years of autonomy.

Once the sensors have been installed, the nodes on the Waspmote Plug & Sense! can be programmed wirelessly. This is possible because of the special feature, OTAP or Over The Air Programming, incorporated into the platform. Thanks to OTAP, users can replace or add sensors without having to uninstall any of the nodes. This helps to keep the maintenance levels within reasonable limits. For example, to extend the service, you can easily add a noise sensor to a network consisting of CO2 probes, simply by attaching it.

The applications are endless for the Waspmote Plug & Sense! platforms. Apart from Smart Cities, the models are preconfigured for creating other widely applicable services out of the box, such as radiation control, ambient control, smart security, air quality, smart agriculture, smart parking and so many more.

You can use these sensor platforms anywhere in the world, as they use the generally available radio frequencies 2.4GHz and 868/900MHz, besides complying with certification standards such as CE, FCC, and IC. Usually, these sensor platforms send information to a sensor gateway that in turn, uploads the data to a cloud service. Therefore, the data is accessible from anywhere in the world and users can integrate it easily into third-party applications.

Use of solar-powered wireless sensor networks makes it so easy for adding a new sensor that municipalities find they do not have to reinstall the network for Smart Cities. The solution reduces the complexity of the installation and its maintenance, while providing it with a high degree of scalability. Available with IP65 enclosures for outdoor deployment and no software license fees, these platforms offer remarkable opportunities.