Two Raspberry Pi HAT Controller Modules

Atomo Systems, from Hong Kong, will be producing the Atomo Modular Electronic System for building electronic projects with four parts—Control, IO, Power, and Connector. The system also includes two low-cost HAT modules with onboard ARM MCUs compatible to the Raspberry Pi (RBPi). The combined controller connector board uses a small and inexpensive MCU, similar to what an Arduino Uno uses. However, the ARM MCU is faster, has more IO, and is better compatible with the RBPi.

The idea behind building such a modular system is to allow the user to focus more on the project rather than worrying about running extra wires for power or adding more IO. The system is highly flexible and has ample system resources. For instance, if you need to solve larger problems, you can simply add more resources such as by swapping controllers rather than starting all over again.

Any electronic project needs Inputs and outputs to connect to the rest of the world. The modular electronic system comes with IO modules with a useful amount of IO. In addition to offering adequate power for most applications, you can double up the modules using the 8-module connector board.

The onboard connectors on the extended controllers offer features such as multi-channel clock generation and bus multiplexing. Therefore, you can easily keep track of the system temperature using the built-in thermistor, and drive a fan if the temperature exceeds a certain limit.

The modular electronic system needs power to work. Apart from deriving power from the USB socket, other options are also available, from 13 W to 2 kW. These include a 5.5 mm DC Barrel Plug, ATX, and POE. Voltages on tap include 12 VDC, 5 VDC, and 3.3 VDC. For driving higher power devices such as heaters and motors, the input voltage may be used directly.

All the controllers are compatible to the 40-pin HAT connector on the RBPi. They contain EEPROMs for the RBPi HAT to allow for system configuration and automatic device driver setup. Separate SPI and I2C interfaces allow addressing two PWMs, two ADCs, and four GPIOs. The MKE02Z16VLD4 MCU by NXP powers both. This is a 44-pin LQFP, 5 V tolerant, and ESD robust ARM Cortex m0+ CPU running at 40 MHz. One of the controllers is a low power module, while the other is a high power module capable of handling up to 600 W of power usage, via a 34-pin power module connector.

Compatibility with the HAT connector on the RBPi allows programming on the RBPi for updating the controllers. Additionally, you can simply use the Atomo as a modular HAT. This way, you can handle ROS robots or any other system where the RBPi is solely used for interfacing and processing, while the Atomo HAT provides the additional power, IO, or real time control the project requires.

The low power RBPi HAT combined controller and Connector boards make two IO module systems. Therefore, you can build POE powered RBPi applications for a simple RBPi powered robot. This board features 2×28-pin IO modules powered by the RBPi itself. The higher power version has a standard 34-pin power module.