What are Tactile Switches?

Tactile switches are electromechanical switches that make or break an electrical circuit with the help of manual actuation. In the 1980s, tactile switches were screen-printed or membrane switches that keypads and keyboards used extensively. Later versions offered switches with metal domes for improved feedback, enhanced longevity, and robust actuation. Today, a wide range of commercial and consumer applications use tactile switches extensively.

The presence of the metal dome in tactile switches provides a perceptible click sound, also known as a haptic bump, with the application of pressure. This is an indication that the switch has operated successfully. As tactile switches are momentary action devices, removal of the applied pressure releases the switch immediately, causing the current flow to be cut off.

Although most tactile switches are available as normally open devices, there are normally closed versions also in the market. In the latter model, the application of pressure causes the current flow to turn off and the release of pressure allows the current flow to resume.

Mixing up the names and functions of tactile and pushbutton switches is quite common, as their operation is somewhat similar. However, pushbutton switches have the traditional switch contact mechanism inside, whereas tactile switches use the membrane switch type contacts.

Their construction makes most pushbutton switches operate in momentary action. On the other hand, all tactile switches are momentary, much smaller than pushbutton switches, and generally offer lower voltage and current ratings. Compared to pushbutton switches, the haptic or audible feedback of tactile switches is another key differentiator from pushbutton switches. While it is possible to have pushbutton switches in PCB or panel mounting styles, the design of tactile switches allows only direct PCB mounting.

Comparing the construction of tactile switches with those of other mechanical switches shows a key area of difference, leading to the tactile switches being simple and robust. This difference is in the limited number of internal components that allows a tactile switch to achieve its intended function. In fact, a typical tactile switch has only four parts.

A molded resin base holds the terminals and contacts for connecting the switch to the printed circuit board.

A metallic contact dome with an arched shape fits into the base. It reverses its shape with the application of pressure and returns to its arched shape with the removal of pressure. This flexing process causes the audible sound or haptic click. At the same time, the dome also connects two fixed contacts in the base for the completion of the circuit. On removal of the force, the contact dome springs back to its original shape, thereby disconnecting the contacts. As the material for both the contacts and the dome are metal, they determine the haptic feel and the sound the switch makes.

A plunger directly above the metallic contact dome is the component the user presses to flex the dome and activate the switch. The plunger is either flat or a raised part.

The top cover, above the plunger, protects the switch’s internal mechanism from dust and water ingress. Depending on the intended function, the top cover can be metallic or other material. It also protects the switch from static discharge.