Monthly Archives: October 2018

Connecting Wireless Temperature Controllers

Modern industrial temperature controllers are not just simple thermostats, as their earlier counterparts were. With the ability to control upwards of a hundred parameters, the latest industrial temperature controllers allow users to set not only temperature points, but also program alarm settings based on adjustable ramp parameters. Users can select the RTD or thermocouple they want to use for collecting data, while setting limits on the set points.

With the advent of digital temperature controllers, users can configure them with a physical interface. Although, initially, the design of some models allowed them to connect to nearby computers through a wired link, the later models of temperature controllers come with Bluetooth enabled.

Traditionally, the physical interface of temperature controllers featured two to five buttons that allowed the user to set the various parameters for the controller. With the limited three to four character LED display on the controller, the user had to either know the button combinations or refer to a manual during the process of setting up the parameters.

Connecting earlier temperature controllers to PCs through wired serial interfaces presented other problems. It required the PC to be near the controller, as the interface and cable could cover only limited distances. This meant the PC had to operate in the noise and dust of the industrial environment, reducing its operational life. Cables connecting the two were prone to electromagnetic interference, and a tripping hazard. Most modern PCs come with only USB connections, and do not have serial interfaces any more, complicating the situation further.

Bluetooth enabled industrial temperature controllers have solved the above problems with ease. Several controller can connect to one mobile device with an app using Bluetooth—a short-range connecting technology. As the user brings the mobile device within range of the controller, he or she can ping the controller to confirm the specific device to interact. The app on the mobile allows the user to interact with the controller for viewing and setting all its parameters and for reviewing any of its error messages.

With the app interface offering greater graphical flexibility, the user can read the error messages and parameter names in plain text. Moreover, he or she can access in-line help for further understanding the function of each parameter and its permissible settings.

The graphical app interface allows the user to set up the temperature controller easily. It does not require the user to page through a manual or memorize the settings. No cables or other inconvenient interfaces are necessary for using these modern mobile interfaces.

With the unprecedented growth of cloud-enabled devices and the Internet of Things, there are concerns about information security in wireless connectivity. Using Bluetooth technology in industrial interconnections has its own advantages. Bluetooth is currently unable to connect to LAN, industrial Ethernet, or to cloud services, and is therefore, secure to that extent.

Furthermore, Bluetooth technology functions over short distances, and communications are limited to within 70 feet, limiting long-range interference. Moreover, users can protect controllers with passwords. Users can select the parameters on the controller that the password will protect, and a remote user cannot change them through the app.

Do You Need EMC Testing?

Any electronic product faces a necessary hurdle before it goes to the market. It must clear the Electromagnetic Compatibility (EMC) test. This being a critical test in the design journey of an electronic product and passing this crucial test proves the design is right.

However, most designers relegate this important emissions testing to a late part of the design lifecycle of the product. This unnecessarily increases the risk of cost overruns and project delays shortly before the planned launch. Therefore, it is necessary to test for emissions at various stages of the product design plan.

When testing for EMC, you are actually minimizing the possibility of the radiated or conducted emissions from your device interfering with other electronic products nearby. Simultaneously, EMC testing ensures that the product under design is impervious to electromagnetic emissions coming from other sources in the vicinity.

Electromagnetic emissions are the energy the product emits in the radio frequency (RF) range. The device may emit these energies in either conducted or radiated form.

Below about 30 MHz, conductors and cables are not very efficient as antennas. At these frequencies, they are rather good at conducting the RF energy through shared loads and power sources. The conducted emissions, when passing through them may start interfering with other electronic equipment.

As the frequency goes up, beyond 30 MHz, conducted emissions are no longer an issue. At these high frequencies, cables and conductors start behaving more as antennas radiating the energy, thereby causing interference with other equipment.

Engineers use different test procedures and equipment for measuring conducted and radiated emissions. Although they use almost similar filter components for mitigating their effects, the electrical values involved are different.

Standards for measurement and testing electromagnetic emissions for both the conducted and radiated type differ in the US and Europe. While the US uses FCC Part 15, Europe uses CISPR 22/EN 55022. However, both approaches are very similar, and if the equipment meets the requirements of one of the standards, you can rest assured that it will meet the needs of the other standard as well.

Both the US and European standards set separate specifications for conducted and radiated emissions. The two types of emissions have their own limits applicable to the final system and its power supply.

Manufacturers making internal mountable power supplies often test them to meet regulations as standalone products. However, this is not enough if your design is using one of these power supplies with a load. In such a case, it is necessary that the complete system meet the EMC regulations. As a metal box encases the power supply, meeting the EMC challenges requires using external components.

Additionally, as most power supplies use switching topologies, they produce high levels of radiated and conducted emissions. Although the manufacturers may have already mitigated these emissions during the design phase, adding load to the power supply may produce further emissions. Therefore, it is necessary to test the combined system to ensure it meets the requirements of the EMC standards. Usually, a certified lab using calibrated test kits does the final testing. However, certain in-house testing is also possible, not requiring much equipment.

Tracking Micro-Fluidic Flows

Scientists have taken analytical chemistry to such advancements that it can detect the effects of extremely tiny amounts of liquids—triggering the requirement of a need to measure such microflow of liquids. NIST, the National Institute of Standards and Technology, has produced such a microflow measurement device, the size of a nickel, and has filed a provisional patent application for it. The device is capable of measuring movements of nanoliters (nL) of liquid per minute. A nanoliter is a billionth of a liter, a volume best understood with an analogy—if allowed to flow at one nanoliter per minute, a one-liter bottle of water would take 200 years to empty completely.

Micro-fluidics is a rapidly expanding field, where such an invention as above could fill an urgent need for critically measuring tiny flow rates precisely. For instance, medical drug-delivery pumps often need to dispense saline at the rate of tens of nanoliters per minute into the bloodstream of a patient, where 50,000 nL may be required to make up a single drop of water.

Apart from medical applications, continuous-flow micro-manufacturing, cell soring and counting, chemical research, and clinical diagnostics are some applications that require increasingly accurate measurements of very small volumes of liquids.

Current devices available on the market, even the state-of-the-art types that profess to measure flow at that scale, suffer one or numerous operational limitations. Some of them require frequent calibration, some use microscopes and other complex imaging systems, while others average the data collected over several minutes, missing out on tracking dynamic changes. Some devices cannot be traced to the International System of Units.

Greg Cooksey invented the optical microflow measurement device. He is a biomedical engineer in the Physical Measurement Laboratory at NIST. Cooksey’s device avoids the above complications. Fabricated at the Center for Nanoscale Science and Technology at NIST, the optical microflow measurement device monitors the speed of fluorescent molecules within a liquid as they flow down a channel nearly the width of a human hair. Two separate laser pulses help to determine the time interval between the responses of the molecules.

When exposed to a specific wavelength of a blue light laser, the fluorescent molecules in the liquid emit green light. In actual practice, a chemical coating modifies the molecules to prevent them from fluorescence. As the fluid travels down the micro-channel, an ultraviolet laser strips off the chemical coating of some of the molecules. At the same time, some distance away on the channel, a blue laser excites these exposed molecules to make them fluoresce. The flow rate is the time elapsed between the removing of the chemical coating and the molecules beginning to fluoresce.

According to Cooksey, the ultraviolet laser pulse, with a wavelength of 375 nm, marks the start-time reference point. Fired down an optical waveguide into the channel, the pulse hits the chemically protected fluorescent molecules moving with the stream, destroying their protective cage and turning them on to respond to excitation by light.

250 micrometers downstream in the channel, the activated molecules cross the path of a blue laser, which makes them emit green light. An optical power meter measures the change in the light intensity 250,000 times per second to estimate the time interval.

The Latest in Li-Fi

Newly developed technologies are allowing wireless networks to operate several hundred times faster than Wi-Fi—one of them is Li-Fi or Light Fidelity. Simply by switching on a light bulb, it is possible to encode data within the visible light spectrum rather than allow them to ride on radio waves as traditional wireless technologies such as Wi-Fi do.

So far, research labs had confined Li-Fi within their closed doors. Of late, however, several new products using the Li-Fi technology has started to appear on the market. While the majority of the wireless industry focused their attention on developing 5G or the fifth generation wireless technology, PureLiFi presents a new dongle for laptops and computers that uses the latest light fidelity technology. Another startup company, Oledcomm from France, offers their Internet lighting system for hospitals and offices.

Light bulbs use LEDs, which are semiconductor devices able to switch at very high speeds, unlike the incandescent or fluorescent bulbs, which are rather slow in turning on and off. Li-Fi technology interrupts the electric current through the LEDs at high speeds, making them flicker and at the same time, encoding the light they produce with parallel streams of data. The analogy here is the process is very much like producing the Morse code in a digital manner, the difference being the flickering is much faster than the human eye can follow.

Dongles, smartphones, and other devices with built-in photo detectors can receive this light encoded with data. This manner of communication is not new, as remote controls have been using this technology using infrared lights. The remote sends tiny data stream commands to toys and televisions, and they interpret the information, process it, and change their functioning accordingly. Li-Fi uses visible light spectrum, as it can reach intensities capable of transmitting much larger amounts of data than infrared light can. For instance, it is common to find Li-Fi networks operating at speeds around 200 gigabytes per second.

The only downside to Li-Fi is it works on line-of-sight. As light does not bend around corners, the transmitter and receiver must physically see each other to communicate effectively. According to Harald Haas, the professor of mobile communications who introduced the world to Li-Fi, this handicap is easy to overcome by fitting a small microchip in every potential illumination device. The microchip would serve to combine two basic functionalities in an LED light bulb—illumination and wireless data transmission—one need only place the microchip embedded LED light bulbs in sight of one another to act as repeaters in between the transmitter and the receiver.

Haas spun out PureLiFi, whose initial products had a throughput of 10 Mbits per second, making them comparable to Wi-Fi versions available at the time. Since then, PureLiFi has advanced the technology to produce LiFi-X, an access point connecting LED bulbs and dongles and providing 40 Mbits per second for both downloads and uploads speeds.

Another company from Estonia, Velmenni, has already demonstrated Li-Fi technology in their products that offer speeds around one Gbits per second. Oledcomm has developed kits for retrofitting Li-Fi into existing LED light bulbs, useful for communication within supermarkets and retail stores.

A Smart Development Board for the Raspberry Pi

The Raspberry Pi or RBPi single board computer when fortified with Cloudio makes a personal IoT computer that users can play with or use for prototyping. Cloudio, the add-on board suitable for the RBPi, offers advanced features such as sensor monitoring and displaying on dashboard, providing custom notifications with image and video, unlimited cloud services, one tap upload for multi-boards, voice assistant capabilities, IFTTT integration, drag and drop programming for Android and iOS, and much more.

As a smart development board kit, Cloudio offers drag and drop programming using the included GraspIO Studio app. Users get a block-based approach that is fairly intuitive. For IoT developers, this approach allows them to reach their goals faster, as the simple but powerful mobile IDE simplifies the complexity of software development.

On the hardware side, the Cloudio kit includes an OLED display, a light sensor, temperature sensor, a mini servo port, a tactile switch, three ADC ports to handle external sensors, three ports for digital outputs, an RGB LED, and a buzzer. This provides the user nearly all the tools necessary for an IoT project. On the software side, the kit comes with the GraspIO, which provides unlimited cloud service, allowing the user to program and manage Cloudio from their mobile devices.

GraspIO provides the user with a block-based feature. Users can treat program modules as blocks, dragging and dropping the blocks as necessary to combine them to achieve various functionalities. This feature offers users with an intuitive mobile interface.

Users can monitor the sensors they attach to the RBPi and arrange their response to be studied in a dashboard. They can set up sensor monitoring projects easily and configure the dashboard to exhibit their response in an intelligent and responsive manner. The kit allows plotting the sensor response in real-time graphs on a mobile device, and exporting data for IoT analysis.

Users can manage several Cloudio kits at the same time, as they can connect their mobile devices to the IoT Cloud Service. Therefore, users can connect to, program, control, monitor, and manage several kits with a single smartphone. The IoT Cloud Service comes with a lifetime offering of 100 daily non-cumulative calls, along with a bunch of 50,000 free preloaded calls.

The IoT Cloud Service also helps in voice control and speech recognition. Users can create their own voice assistants, and add custom voice commands including their own wake-word.

For instance, with the Cloudio Smart Development Board hooked up with the RBPi, a user can interface the RBPi and a USB camera, using the in-app camera block to capture images, videos, and even create GIFs or time-lapse videos. The user can add several features to their projects, including custom email, images, and video notifications.

The Cloudio kit enables features such as adding speech outputs to projects. Therefore, users can make their projects respond with voice outputs, using the easy to use in-app speak block that comes along with the kit. Other features the kit offers are creating real-time speech notifications, custom messaging, or playing recorded audio from the board.

Mimicking Nerves with Memristors

Researchers are planning to build a computer mimicking the monumental computational power of the human brain. For this, they prefer to use memristors, because these devices vary their electrical resistance on the basis of the memory of their past activity. Memristors are semiconductor devices, and at NIST, the National Institute of Standards and Technology, researchers demonstrate the long and mysterious manner of the inner workings of memristors, explaining their ability to behave as the short-term memory of human nerve cells.

Nerve cells signal one another, but how well they do so depends on the frequency of their recent past communication. In the same way, the resistance of a memristor also depends on the current flow that went through it very recently. The best part is memristors remember even with their electrical power switched off.

Researchers read the memristor with the help of an electron beam. As the beam impinges on various parts of the memristor, it induces currents depending on the resistance value of that part. Traversing the entire device, this yields a complete image of variations of current throughout the device. By noticing the nature of the current variations, it is possible to indicate the places that may fail, as these show overlapping circles within the titanium dioxide filament.

So far, during their study of memristors, scientists have not been able to understand their working, and neither could they develop standard tool-sets for studying them. Now, for the first time, scientists at NIST have been able to create a tool-set that can probe the working of memristors deeply. They envisage their findings will pave the way for operating memristors more efficiently, and minimize current leaks from them.

For exploring the electrical functioning of memristors, the scientists focused a beam of electronics at various locations on the device. The beam was able to knock some of the electronics from the titanium dioxide surface of the device. The free electrons formed an ultra-sharp image of each of the locations. The beam also caused four clear-cut levels of currents to flow through the device. According to the researchers, several interfaces of materials within the memristor were the cause. Typically, a memristor has an insulating layer separating two conducting metal layers. As the researchers could control the position of the electron beam inducing the currents, they were able to know the location of each of the currents.

By imaging the device, researchers located several dark spots on the memristor. They surmised these spots to be regions of enhanced conductivity. These were the places from where there was a greater probability of currents leaking out of the memristor during its normal operations. However, they found the leaking pathways to be beyond the core of the memristor, and at points where it could switch between high and low resistance levels.

Their finding opened up a possibility of reducing the size of the device to eliminate some of the unwanted current leaking pathways. Until now, the researchers were only able to speculate on the current leakages, but had no means of quantifying the size reduction necessary.

What is 3D MLC NAND Flash Memory?

To unleash performance fit for the next generation of computers, Transcend has released its MTE850 M.2 Solid State Device (SSD), based on 3D MLC NAND flash memory. The device utilizes the PCI Express Gen3 x4 interface and supports the latest NVMe standard. According to Transcend, this SSD targets high-end applications such as gaming, digital audio and video production, and multiple uses in the enterprise. Typically, such applications demand constant processing of heavy workloads, while not willing to stand any system slowdowns or lags of any kind. Transcend claims the MTE850 M.2 SSD will offer users high-speed transfers and unmatched reliability.

High Speeds for High-End Applications

As the above SSD uses the PCIe Gen3 x4 interface and follows NVMe 1.2 standard, it transmits and receives data on four lanes simultaneously. This results in the SSD working at the blazing speeds of up to 1100 MBps while writing, and up to 2500 MBps while reading.

Why the PCIe Interface

Presently, the most popular method of connecting a host computer to an SSD is through SATA or Serial ATA interface. However, PCIe uses one transmit and one receive serial interfaces in each of the four lanes, the PCIe interface is much faster than SATA is, and it is able to fulfill new performance requirements in better ways.

Why the NVMe Standard

The growing needs of enterprise and client applications demands better performance vectors than the Advanced Host Controller Interface (AHCI) can provide. The NVM Express (NVMe) fulfills this enhanced host controller interface standard, which also calls for low latency, increased IOPS, and scalable bandwidth.

What is 3-D Expansion?

Existing planar NAND memory chips are arranged in the form of flat two-dimensional arrays. In contrast, 3-D NAND flash has memory cells stacked in the vertical direction as well as in multiple layers. This breaks through the density limitations of the existing 2-D planar NAND, with the 3-D NAND offering a far greater level of performance and endurance.

With Better Endurance Comes Higher Reliability

To help keep data secure, Transcend has engineered their MTE850 M.2 SSD with a RAID engine (a type of data storage virtualization technology) and Low-Density Parity Check (LDPC) coding, along with an Elliptical Curve Cryptography (ECC) algorithm. Additionally, Transcend manufactures their SSDs with top-tier MLC NAND flash chips and provides them with engineered dynamic thermal throttling mechanism. This way, Transcend ensures the MTE850 delivers superior stability and endurance befitting for high-end applications.

SSD Scope Software

Users can download the SSD Scope software application free of charge from the Transcend site. The application helps to monitor the health of the running SSD using SMART technology and allows the user to enable the TRIM command to obtain optimum write speeds. Using the application also keeps the firmware of the SSD up-to-date, and helps in migrating data from the original drive to the new SSD with only a few clicks.

With certificates from CE, FCC, and BSMI the #-D MLC NAND flash memory based  MTE850 M.2 SSD from Transcend works on 3.3 VDC ±5%, operating within 0 and 70°C. With mechanical dimensions of 80x22x3.58 mm, the SSD weighs only 8 grams.

What are Synchronous Condensers?

All manufacturing and industrial plants around the world face the unique problem of lagging power factor. Ideally, the voltage and current vectors should align perfectly for any AC power system feeding a load. In actual practice, however, the current either leads or lags the voltage by a few degrees, depending on whether the load is capacitive or inductive. Power factor is the cosine of the angle the current vector makes with the voltage vector as the reference. A positive power factor less than unity leads to reactive energy drawn from the supply, and rather than being converted to useful work, the reactive energy is wasted as heat generated in the system.

One of the methods of bringing the power factor back to unity or near to unity is the synchronous condenser, which when connected to the system, dynamically delivers the reactive power required as an uninterrupted reference source for improvement. The condenser adjusts the excitation level automatically and thereby maintains the power factor to the desired level. The synchronous condenser improves the overall power quality of a power system as it helps to reduce voltage transients, creates a more uniform sine waveform, and reduces the harmonic distortions in the system. All these advantages make the synchronous condenser a critical factor for any power facility.

In practice, the level of excitation of the synchronous condenser depends on the amount of power factor correction necessary and the level sensed by the controls of the condenser. The condenser then adjusts its excitations levels automatically for maintaining the power factor at the specified setting. The synchronous condenser adjusts the power factor without creating switching transients, and it remains unaffected by harmonic currents that the solid-state motor drives produce.

In contrast to conventional methods of power factor correction, using a synchronous condenser results in a much smoother waveform and does not affect a system adversely, when loaded with current harmonics. As the condenser is a low impedance source, it appears as inductive to loads.

Synchronous condensers are usually fitted with frequency, voltage, and temperature sensors that protect the system against overload and other dangerous situations. The solid-state voltage and power factor regulators within the synchronous condenser to a precision job, and switchboard grade meters keep track of the VAR and power factor. All this instrumentation makes sure the power supply system operates at its peak performance 24/7. To make it compatible to any industrial applications, manufacturers of synchronous condenser usually provide them with color touch screen displays and means of communicating remotely.

Synchronous condensers offer several advantages. These include elimination of power bill penalties, automatic power factor corrections, increased system stability, mitigation of voltage transients, reduction of system losses, and lowering the overall maintenance costs.

As synchronous condensers do not have to supply a torque, there is usually no output shaft. Enclosed in a leak-proof shell, the synchronous condenser is filled with hydrogen to help with reducing losses from wind friction and cooling. As hydrogen is lighter than air by about 7%, the wind friction or windage losses are reduced by 7% for a unit filled with hydrogen over that containing air. Additionally, heat removal improves by a factor of ten.

Using Relays to Detect Faults

Different types of relays are in use in every-day life. These include relays constructed from electromechanical elements such as from solenoids, induction discs, hinged armatures, or from solid-state elements such as from transistors, magnetic or operational amplifiers, silicon-controlled-rectifiers (SCRs), diodes, or digital computers using microprocessors and analog-to-digital converters.

Development of protection with relays began with the electromagnetic types, and most descriptions of relay characteristics still retain the electromagnetic terms. Although the construction of a relay does not inherently alter the concept of protection, each type has its own advantages and disadvantages.

General faults are often short circuits, where the current increases in magnitude, while the voltage goes down. Apart from the changes in magnitude, the AC field may also undergo changes in parameters such as system frequency, active/reactive power, harmonic components, phase angles of the current and voltage phasor, and more.

Operating principles of detection of faults with relays are based on detecting the above changes and identifying whether the changes exist within the predefined zone of protection or outside. Depending upon the operating principle of the relay, detection can be categorized based on which of the input quantities the specific relay will respond. This leads to eight major types of faults that relays can detect:

  • Frequency Sensing
  • Harmonic Content
  • Pilot Relaying
  • Distance Measurement
  • Phase Angle Comparison
  • Differential Comparison
  • Magnitude Comparison
  • Level Detection

Most power systems operate at a normal frequency of 50 or 60 Hz, depending on the country. Deviating from the normal frequency indicates an existing problem or an imminent one. Engineers use frequency-sensing relays to detect and take corrective action to bring the system frequency back to normal.

Power systems usually operate with a sinusoidal waveform of the fundamental frequency. Abnormal system conditions create harmonics that are typically associated with heat and loss in efficiency. Electromechanical or solid-state relays can detect these harmonics, based on which control action may be required.

Sometimes information is required from a remote location, and a pilot relay provides it in the form of contact status, open or closed. Usually, this information is carried over a channel of communication using telephone, microwave, or carrier circuits.

An impedance relay determines the distance or length of the line based on a given spacing and diameter of the conductor. The relay compares the local voltage with the local current, and gives a measurement of the line impedance as seen from its terminals.

A phase angle comparison relay compares the relative angle of phase between the AC voltage and the AC current, measuring the power factor angle. This comparison determines the direction of flow of the current with respect to the voltage, with the magnitude of the angle measured giving an indication of faults.

Under normal operating conditions, current entering one end of an electrical equipment should equal the current exiting from the other end. However, in case of any fault within the equipment, this balance is no longer maintained. A differential relay detects the difference in the two currents, and provides protection.

Relays can compare the magnitude of current in one circuit with the magnitude of current in another and detect abnormalities based on whether they should have been equal or proportional.

Finally, relays can be designed to trip the circuit breakers should the operating current level crosses a specific setting.

Industrial Controls and the Raspberry Pi

Industries with control equipment prefer to use a standardized system of mounting components such as circuit breakers within equipment racks. The most popular arrangement is the DIN rail and enclosure. The rails are typically made from a cold-rolled carbon steel sheet and zinc-plated or chromated for a bright surface finish. DIN is the acronym for Deutsches Institut fur Normung in Germany, and the rest of the world has adopted their standards as the EN and IEC standards.

The famous single board computer, the Raspberry Pi (RBPi) is becoming increasingly accepted as a development platform and a suitable solution for applications involving process controls. Some of these applications involve simple HVAC controls, power management, materials management, and gas detection, among a vast range. However, moving to the industrial arena means the RBPi needs to be fitted with a DIN rail enclosure.

That is exactly what VP Process Inc. has planned. Their series Pi-SPI-DIN of products, based on the RBPi, will all be DIN rail mountable, and hence, suitable for use in the industry. Their first product in the series is the RPi-3 controller, which will work from a wide range of input voltages between 9 and 24 VDC. It will provide RS485 Interface available on RJ45 connectors and Terminal Block. It will provide the RBPi with a real-time clock and battery backup with a CR2032 battery. The user will be able to make use of all the GPIO interfaces of the RBPi as they will be available on a 16/24 pin ribbon cable connector. The DIN rail enclosure will have LED indicators, and VP Process Inc. will be offering sample test programs in C and Python. The idea behind developing the RPi-3 is to allow the RS485 interface to communicate with all the eight channel modules available from VP Process Inc.

The first of the new series from VP Process Inc. is the PI-SPI-DIN-RTC-RS485, and this will be available with DIN rail mounting hardened interfaces in three mounting versions—with DIN rail clips, DIN rail enclosures, and PCB spacers.

The wide-ranging power input accepting any voltage between 9 and 24 VDC of the unit will produce an output of 5 VDC at a maximum current of 3 Amps. There will be two GPIO connectors, one belonging to the RBPi board, and the other is external for peripherals. Another 16-pin connector will provide the power, SPI, I2C, and five chip-enables for the PI-SPI-DIN series.

Apart from the RS485 interface, VP Process Inc. is planning for other peripheral units as well. These will include the eight-channel 4-20 mA module, four-channel relay output module with contacts rated for 2 Amps, eight-channel isolated digital input module, and four-channel 4-20 mA module.

VP Process Inc. will be providing each module with two 16-pin ribbon cable sockets and cables. Each of the connectors and cables will carry the main power supply input to the main interface, SPI bus, I2C bus, and the five GPIO lines serving as chip-selects.

To maintain compatibility with non-industrial uses, VP Process Inc. will also provide each peripheral as a PCB on spacers, apart from PCB with DIN rail enclosure or DIN rail clips.