Daily Archives: September 29, 2022

What are Floating Sensors?

Floating sensors support applications for environmental monitoring and agriculture. Designed by researchers from the University of Washington, floating sensors typically spread just like seeds of the dandelion plant do, when a drone drops them from a height. The sensors are battery-free devices, hovering over 100 meters. The sensors have electronics on board, including a capacitor for storing overnight charge, sensors, and a microcontroller for running the system. The entire structure resides in a flexible body.

The evolution of dandelions allows them to disperse their seeds further than a kilometer in the air. Although for valuable wireless sensors, it is not a good idea to drop them from great heights. However, the researchers did just that by creating a tiny device that can carry the sensor, with the wind blowing it at it tumbles towards the ground.

Just like the dandelion seeds do, the sensors too, float in the breeze. As the device is about 30 times heavier than a dandelion seed weighing one milligram is, it can travel only up to a distance of about 100 meters on a windy day. The researchers had to mimic the shape of the dandelion seeds as it was necessary to ensure that the device landed with its solar panels facing skywards.

The structure of dandelion seeds has a central point where little bristles stick out. These tend to slow down their fall. The researchers took a 2-D projection of the seed and used it to create the base design for the structure of their floating sensors. When they added more weight, the bristles started to bend inwards. The researchers then added a ring structure to make the bristles stiffer, and take up more area, allowing it to slow down the fall. The team tested more than 75 designs with various sizes and patterns using laser micro-machining.

The sensor can share data related to pressure, temperature, humidity, and light up to a distance of 60 meters. The researchers have added a capacitor to the design of their floating sensors, allowing it to store some charge for the night. As an experiment, the researchers used a drone to drop sensors from a height of 20 meters, sending the sensors sideways to about 100 meters towards a parking area.

According to the researchers, from an engineering point of view, imitating dandelion seeds allows for achieving some amazing capabilities. Although dandelion plants cannot move, they can disperse their seeds up to a kilometer away, provided the right conditions exist. The team has been trying for a similar achievement by automating the deployment of wireless sensors to create a network. Conventional methods of studying climate changes or monitoring the environment over really large geographic areas can be very expensive and time-consuming. Dandelion seeds and their dispersion methods provided the team with the necessary inspiration to create sensors that can disperse in the wind, and automate this process.

The team had to look at nature again to get good coverage over the area of interest. They mimicked the random process followed by plants to disperse their seeds. The researchers designed a large array of different structures to make them float for different periods.