Preserving IoT Battery Life

At MIT, researchers have built a wake-up receiver for IoT devices. The receiver uses terahertz waves to communicate, making the chip more than ten times smaller than contemporary devices. The receiver also includes authentication that helps protect it from certain types of attacks. The low power consumption of the chip means it can help preserve battery life in robots or tiny sensors.

The current trend is towards developing ever-smaller devices for IoT or the Internet of Things. For instance, sensors can be smaller than a fingertip, capable of making any object trackable. Most of these tiny sensors, however, have even tinier batteries that are nearly impossible to replace. Therefore, engineers need to incorporate a wake-up device in these sensors. It keeps the device in a low-power sleep mode when not operating, thereby preserving battery life. The new device from MIT is capable of protecting the device from certain attacks that could drain its battery rather quickly.

The present generation of wake-up receivers is typical of the centimeter scale. This is because their antennas need to be proportional to the length of the radio waves they use for communicating. On the other hand, the MIT team utilized the terahertz wave for the receiver. As these waves are about one-tenth the length of regular radio waves, they could design the chip to be barely greater than a square millimeter.

It is possible to incorporate the wake-up receiver into microbots for monitoring environmental changes in locations that are either hazardous or too small for other robots to reach. As the device operates on terahertz frequencies, it is possible to use them in emerging applications like radio networks that operate as field-deployable swarms for collecting localized data.

Using terahertz frequencies, the researchers could make antennas the size of a few hundred micrometers on either side. The implication of such small-size antennas is that it is possible to integrate them on the chip, thereby creating a totally integrated solution. Ultimately, the researchers could build a wake-up receiver tiny enough to attach to tiny radios or sensors.

On the electromagnetic spectrum, terahertz waves exist between infrared light and microwaves. At very high frequencies, they travel much quicker than radio waves can. Terahertz waves, also known as pencil beams, travel in a rather direct path as compared to other signals, making them more secure.

However, terahertz receivers often multiply their signal by another signal so that they can alter their frequency. This process is termed frequency mixing or modulation, and it consumes a huge amount of power. The researchers at MIT used a pair of tiny transistors as antennas for detecting terahertz waves. This method of detecting consumes very little power, as it does not involve frequency mixing.

Even when they placed both antennas on the chip, the MIT wake-up chip was only 1.54 square millimeters and used only 3 microwatts to operate. The presence of two antennas maximizes its performance and makes it more sensitive to receiving signals. Once it detects the terahertz signal, it converts the analog signal into digital data for processing. The received signal contains a token, which, if it matches the wake-up receiver’s token, will activate the device.