Robotics and Motion Control

Across the industrial space, automation is a growing trend in factory floors throughout the world. This is essential to improve the efficiency and production rates. When creating the automated factory, engineers may introduce a robotic system or implement a motion control system. Although both can essentially accomplish the same task, they have their own unique setups, motion flexibility, programming options, and economic benefits.

The Basics

A straightforward concept, motion control initiates and controls the movement of a load, thereby performing work. A motion control system is capable of precise control of torque, position, and speed. Motion control systems are typically useful in applications involving rapid start and stop of motion, synchronization of separate elements, or positioning of a product.

Motion control systems involve the prime mover or motor, the drive, and its controller. While the controller plans the trajectory, it sends low-voltage command signals to the drive, which in turn applies the necessary voltage and current to the motor, resulting in the desired motion.

An example of a motion control system is the programmable logic controller (PLC), which is both noise-free and inexpensive. PLCs use the staple form of ladder-logic programming, but the newer models also have human-machine-interface panels. The HMI panels offer visual representations of programming the machine. With PLCs, the industry is able to control logic on machinery along with control of multiple motion-control setups.

Robots are reprogrammable, multifunctional manipulators that can move material, tools, parts, or specialized objects. They can be programmed for variable motion for the benefit of performing a variety of tasks.

Most components making up the motion control system are also a permanent part of robots. For instance, a part of the robot’s makeup includes mechanical links, actuators, and motor speed control. The robot also has a controller, which allows different parts of the robot to operate together with the help of the program code running in the controller. Most modern robots operate on HMI that use operating systems such as Linux. Typical industrial robots take many forms such as parallel picker, SCARA, spherical, cylindrical, Cartesian, or a simple articulated robotic arm.

Robot systems also make use of drives or motors to move links into designated positions. Links form the sections between joints, and robots can use pneumatic, electric, or hydraulic drives to achieve the required movement. A robot receives feedback from the environment from sensors, which collect information and transmit it to the controller.

The Differences

While the robot is an expensive arrangement, a motion control system has components that are modular, and offer greater control over cost. However, motion controller components require individual programming to operate, and that puts a greater knowledge demand on the user.

Motion control systems, being modular, offer the scope to mix and match old hardware with the new. This facilitates multiple setups, with modular configuration ability, and applicable cost constraints.

With hardware differences between products decreasing rapidly, purchasing decisions are now mostly based on the software of the system. For instance, most modern systems are plug-n-play type, and they rely more on their software for compatibility.