Tag Archives: Linear Technology

LTM2893 μModule isolator for ADCs

Analog to digital converters (ADCs) need to float to the common mode of the input signal to absorb the harsh voltage conditions and transients. The best way to do this is to place an isolation barrier between the ADC and the external signal. Even applications that perform under moderate conditions can benefit from the presence of an isolator. The LTM2893 from Linear Technology provides such isolation, improving on system safety, especially when reading from high-resolution successive approximation register type of ADCs.

Ideally, the isolator for an ADC should be near invisible. Its function would be to manage the control and data signals, maximizing the sampling rate, and minimizing the effects of jitter on the performance of signal to noise ratio. The LTM2893 μModule isolator from Linear Technology meets all the above criteria, achieving these for ADCs with SPI interfaces, offers a 1 Msps range, while supporting a 6K Vrms isolation rating.

Options that are more traditional exist, but provide limited functionality, especially when reading data from high-resolution successive approximation register (SAR) ADCs. Most traditional high speed digital isolators work maximum up to 25 MHz, with a few special devices reaching 40 MHz On the other hand, the LTM2893 can easily read data samples at rates up to 100 MHz. Additionally, it is flexible enough to be able to handle multiple ADCs. This effectively solves timing issues and other limitations of the standard digital isolator interfacing that SAR ADCs face.

Test and process equipment need isolation so that their inputs are not damaged if accidentally misconnected or from overvoltage events. Usually, engineers use an isolator as a high voltage level shifter for extending the common mode range thereby reducing the ground noise. The LTM2893 is intelligent enough to ignore transients events of the common mode type up to 50K V/μs, as this provides a low-capacitance isolation barrier along with fully differential data communication.

When dedicated SPI isolators and other general-purpose digital isolators isolate ADCs, they use multiple digital isolators for supporting signals such as busy status or conversion start signals. In addition, they offer a 3- or 4-wire SPI port. They also suffer from signal propagation delays, as the isolated SPI port must wait for the return of the acknowledgement signal before the next data latching can occur. Adding all the propagation and the response delays from the ADC SPI port, a single read may suffer a delay of about 35 ns. Therefore, although the initially rating of a digital isolator may be at 150 Mbps, in reality, the delays reduce the effective frequency to 25 MHz or even less.

Linear Technology has provided the LTM2893 with a dedicated master SPI engine on its isolated side, and a dedicated slave engine and a buffer on the logic side. The master SPI engine of the LTM2893 monitors the status signals from the ADC, fetching the data as soon as its BUSY signal goes low. There is no interaction with the logic side once the conversion has started.

The buffer register on the slave SPI engine on the logic side receives data from the isolated side via the isolated barrier. The two sides therefore, operate independently of each other.

Accurate Power Monitoring with LTC2992

Linear Technology Corporation, now a part of Analog Devices, Inc., has recently placed on the market a power monitoring IC, LTC2992, which offers a wide-range, dual monitoring system for current, voltage, and power for 0-100 VDC rails. The IC is self-contained and does not need additional circuitry for functioning.

Users get a variety of options for operating the LTC2992. For instance, they can derive power from a 3-100 VDC monitored supply, or from a 2.7-100 VDC secondary supply, or from the shunt regulator on-board. Therefore, when monitoring the 0-100 VDC rail, the designer does not have to provide a separate buck regulator, a shunt regulator, or an inefficient resistive divider.

Within the LTC2992 are a multiplier and three Analog to Digital Converters (ADCs) of the delta-sigma type. Two of the ADCs provide measurements for current in each supply, while the third ADC measures voltage in 8- or 12-bit resolution and power in 24-bit resolution. The wide operating range of the LTC2992 makes it an ideal IC for several applications such as blade servers, advanced mezzanine cards, and 48 V telecom equipment.

Users with equipment using negative supply or supply greater than 100 VDC can make use of the onboard shunt regulator. The LTC2992 has registers that one can access with the I2C bus, and it uses these registers to store the measured values. It can measure current and voltage on-demand or continuously, using these to calculate the power, and stores this information along with maximum and minimum values in the registers.

The LTC2992 has four GPIO pins, which the user can configure as ADC inputs for measuring neighboring auxiliary voltages. Over its entire temperature range, the LTC2992 takes measurements with only ±0.3% of the Total Unadjusted Error (TUE). For any parameter going beyond the thresholds programmed by the user, the LTC2992 raises an alert flag in the specified register and on the specified pin. This is according to the alert response protocol of the SMBus.

The I2C bus on the LTC2992 operates at 400 kHz and features nine device addresses, a reset timer for a stuck bus, and a split SDA pin for simplifying the opto-isolation for the I2C. Another version of the IC, the LTC2992-1 offers users an inverted data output pin for the I2C. This makes it easy for the users to interface the IC where the opto-isolator has an inverting configuration.

The ICs, LTC2992 and LTC2992-1, are both available in automotive, industrial, and commercial versions. Their operating temperature ranges are -40°C to 125°C for automotive, -40°C to 85°C for industrial, and 0°C to 70°C for commercial applications. Linear Technology Corporation makes both versions of the IC in packages of 16-lead MSOP and 16-lead 4 x 3 mm DFN, and both versions are RoHS-compliant.

Most electronic applications require monitoring of current, voltage, and power at board level. Knowing the key system parameters provides valuable feedback, allowing users to monitor the health of their systems and make intelligent decisions. They help in determining whether a system is operating properly, efficiently, or even dangerously. Users can choose for various types of monitoring ICs, ranging from hot-swap dedicated power ICs to temperature monitors.

Monitoring Batteries Wirelessly

Lithium-ion batteries, when used to drive automobiles, can operate reliably over long periods, but require considerable care. That means not operating them to the extreme ends of their state of charge or SOC. With passage of time and usage, the capacity of a lithium ion cell changes, and therefore, each cell in the system has to be managed so that it remains within its constrained SOC.

As vehicle operation requires generating as much as 1000 V or higher, tens or hundreds of cells are necessary, configured in series and parallel strings, to provide sufficient power for the vehicle. The battery electronics has to operate at these high voltages, while rejecting common mode voltage effects, and differentially measuring and controlling each cell in the strings. At the same time, the electronics has to transmit the information from each cell in the battery stack to a central point for processing.

High-power applications such as vehicles employing a high voltage battery stack impose tough conditions, including operation with wide operating temperatures and significant electrical noise. Therefore, the battery management electronics has to maximize its operating range, safety, lifetime, and reliability. At the same time, it has to minimize the weight, size, and cost.

Linear Technology has made steady advances in battery cell monitoring, increasing the life and reliability of battery packs in automobiles, and enabling high performance. For further improving the safety and reliability of full battery systems, Linear Technology is moving towards wireless Battery Management Systems or BMS.

Monitoring Batteries

Each LTC68xx IC from Linear Technology can monitor up to 12 Li-ion cells and they can be connected in series to enable simultaneous monitoring of every cell within a long, high voltage battery string. This enables precision battery management in hybrid/electric vehicles, electric vehicles, and other high power, high voltage battery stacks.

For instance, each LTC6811 has two built-in serial interfaces operating at 1 MHz each, one SPI interface for connecting to a local microprocessor, and the proprietary 2-wire isoSPI interface. Two communication options are possible with the isoSPI interface—you can connect and address multiple devices in parallel to the BMS master, or connect multiple devices in a daisy chain to the BMS master.

Wireless BMS

When employing a wireless BMS, a wireless connection interconnects each module rather than the twisted pair of the isoSPI. For instance, Linear Technology combines its SmartMesh wireless mesh networking with the LTC811 battery stack monitors to replace the traditional wired connections between the battery packs and the battery management system. This is a significant breakthrough offering a huge potential for lowering costs, reducing wiring complexity, thereby improving the reliability for large multicell battery stacks for electric and hybrid vehicles.

Automakers are ensuring the safety and reliability of their electric and hybrid vehicles by addressing the potential mechanical failure of connectors, cables, and wiring harness, as these have to operate in high-vibration automotive environments. Until now, automakers were under the impression that wireless systems would be unreliable in the metal and high-EMI surroundings within a vehicle. With SmartMesh networking, the interconnect system has proved to be truly redundant.