Daily Archives: September 1, 2018

Industrial Motors for Machine Automation

Industrial engineers use different types of motion control devices for improving the production rates and efficiencies on the floor of automated factories. Three major types of motion control devices are in demand for machine automation—stepper motors, servomotors and variable frequency drives (VFDs).

In general, stepper motors along with their drives, and controllers are widely used as they offer simple implementation, beneficial price/performance ratios, and high torque at low speeds. This motor is essentially a brushless DC version, moving in equal fixed steps during rotation, and only a single step at a time. Not requiring tuning or adjustments, stepper motors provide very high torque at speeds below 1000 RPM. They are cost-effective, as their prices are substantially lower than the cost of comparable servo systems. Since the torque they produce decreases as they speed up, it makes their operation difficult. Therefore, the work done by stepper motors becomes impractical at speeds in excess of 1000-1500 RPM.

Servomotors come with a motor, drive, a controller, and a device for positional feedback. For variable load applications, engineers prefer them to stepper motors, as they deliver high torque when rotating at speeds above 2000 RPM. Servos require adjustments and tuning, making them more complex to control compared to stepper motors. Including maintenance costs, their positional feedback arrangement can push their prices well beyond those of stepper motors.

Costing less than stepper motors or servomotors, VFD systems include an AC motor and a drive, but are unable to provide positioning. However, they can be good for applications requiring speed control on variable loads. For applications where the motor need not run continuously at full load, a VFD system can save considerable amount of energy. Another feature of VFDs is their soft-start capability, allowing a limit to high inrush currents.

In a stepper motor system, the controller regulates the position of the step, the torque generated by the motor, and the speed of the motor as it moves from one step to another. The driver operates on the control signals the controller generates by modifying and amplifying these signals to regulate the direction and magnitude of the current flowing into the motor’s windings. This way, it drive rotates the shaft of the motor to its desired position, and holds it in position with the required torque for the required time.

Controllers for stepper motors can be either open or closed loop types. Open-loop controllers are simpler, not requiring any feedback from the motor, but are less efficient. Open-loop controllers operate on the assumption the motor is always at the programmed step position and is producing the desired torque.

On the other hand, closed-loop controllers always operate with feedback based on the effective load on the motor. Therefore, the performance of the closed-loop stepper motor controller is similar that of a servo motor, and makes the operation more efficient.

Making a stepper motor rotate through each of its steps requires energizing the several windings within the motor in a specific sequence. Typically, stepper motors rotate 1.8 degrees per step, necessitating 200 steps to make a complete revolution.