Tag Archives: Heatsinks

Does the Raspberry Pi 3 Run Hotter than the Raspberry Pi 2?

Several people are now eagerly using and testing the new SBC or single board computer from the Raspberry Pi Foundation, the Raspberry Pi Model 3, or RBPi3. Although the overall response has been of enthusiastic welcome, there are some notes of concern as to the new board running rather warm under load. Michael Larabel has run some tests to compare and show just how warm the RBPi3 can get when compared to what the RBPi2 does. Finally, we suggest some remedies for cooling down the RBPi3.

Michael has used the Phoronix Test Suite while monitoring the SoC temperature on both, the RBPi3 and RBPi2, when running the same benchmarks in the same manner for both. One important point to note is the RBPi2 was running inside its case, while the RBPi3 ran completely exposed.

The average temperature of the SoC on the RBPi3 under load was 61∞C, peaking at 82∞C. Under the same conditions, the RBPi2 (within its case), recorded an average temperature of 48.9∞C, peaking at 59∞C. That means the RBPi3 under load, operating in open air, was peaking at more than 20∞C, over its predecessor. That also means if you are planning to put the RBPi3 inside a case when operating, it might make matters worse.

Therefore, if you are planning to stress your RBPi3 routinely, you might consider the following options to keep the RBPi3 temperature down.

Wait for the Linux 4.6 kernel

According to Eric Anholt from Broadcom, the VC4 DRM driver is undergoing an update to get into the Linux 4.6 kernel merge window. This will include a significant 3D improvement in performance and a fix to the HDMI hotplug detection for the RBPi2 and RBPi3. The improvement in performance comes from the RBPi kernel DRM driver pairing with the user-space driver of the VC4 Gallium3D.

Better performance is mainly due to the pipelining, binning and rendering jobs from using xllperf or GLAMOR over OpenGL, which boosts the performance by over 20-30%. The hardware is capable of running separate threads simultaneously for binning and rendering, while OpenGl waits for them to complete before it submits the next job.

Wait for the 64-bit Raspbian

Michael has done some tests to show that there is a conclusive evidence of performance difference between using 64-bit software on supported hardware over a 32-bit operating system. Since the new RBPi3 is a 64-bit system at hardware level, the results should apply to this SBC as well.

For the test, Michael has used an Intel UX301LAA ultrabook with 8GB of RAM and 128GB SanDisk SSD. The operating system was Ubuntu 16.04 daily ISO build, in 64-bit and 32-bits version.

The average power used by the 64-bit system was 30.1W compared to 31.9W by the 32-bit system. Lowest power consumption with 64-bit build was 8.5W compared to 9.4W. The peak power consumed by the 32-bit system was higher at 54.3W compared to 49.7W by the 64-bit system.

Use a Heat Sink to Cool the RBPi3 immediately

For immediate relief, you can use the passive heatsink available that fits the RBPi2 as well as the RBPi3. At $5 from Amazon, this solution is cost-effective in addition to being immediately available. Moreover, the heatsink will drop the temperature of the SoC by almost half.

Graspinghand’s SweetBox, ScorPi and Heatsinks for the Raspberry Pi

Those who need a casing for their Raspberry Pi or RBPi are rather spoiled for choice. There are so many types of casings available, and that makes it so difficult to settle on one. Sometimes, you need a casing that does not take up too much space, but is able to protect your RBPi from sundry damage. If you want the smallest case on the market, try the SweetBox from Graspinghand.

Besides being the smallest on the market, SweetBox is injection molded with high-performance nylon, and is compatible with RBPi models B, Rev 1 & 2. It has several features such as it allows the insertion of a Micro-SD card into its adapter and the mounting of the RBPi camera. A rubber cap protects the GPIO pins when not in use, and is easily removable to allow connections.

Slots on the casing allow easy access to the DSI or Digital Serial Interface for attaching an LCD panel to the RBPi and the CSI or Camera Serial Interface for attaching a camera. Other mounting holes are available on the base, while the entire casing allows simple opening and closing without any screws or tools.

SweetBox is made from high-performance nylon, the EMS Grilamid type typically used for glass frames, electrical equipment and tools. This material makes the casing nearly unbreakable. The material is also lightweight, and the casing is only 35gms with dimensions of 95x65x25mm.

However, one of the most remarkable features of the SweetBox is it allows heatsinks to be mounted, so that your RBPi can operate within the casing, but without getting all heated up. Graspinghand offers three CNC machined heatsinks that you could use with or without SweetBox. The three heatsinks come with ready-to-mount thermal pads. With the heatsinks fitted, your RBPi will run at least 4°C cooler at full power.

Placing the heatsinks requires some dexterity. First, you must peel off the protective film off one side of a thermal pad. Then fix the heat sink very carefully in the center of the uncovered surface – this will stick the thermal pad to the heatsink. If there is excess thermal pad protruding out around the heatsink, use scissors to cut it off. Now peel off the remaining protecting film from the other side of the pad and place the heat sink and pad combination very carefully on top of the IC to be cooled. Use the same procedure for mounting all the three heatsinks, taking care to keep the same orientation of the fins for all the three.

Graspinghand also offers ScorPi, a flexible gooseneck arrangement for holding things such as the camera board on the RBPi. A brass fixture allows the ScorPi to be attached to SweetBox, while the brass fixture on the other end of ScorPi attaches to the camera board. You can flex the ScorPi to position the camera at any angle required, and it will remain in position to allow capturing images without any blurring due to shaking.

Cleaning the ScorPi is also very easy, as you can loosen all parts and clean them with a soft wipe using a mixture of white vinegar and salt.