Tag Archives: Photovoltaic Cells

Is Your Solar Panel Installed the Right Way?

Although few people would have noticed, the costs of solar photovoltaic cells have been dropping over the years. As the technology took off, costs plummeted in the first 12 years. However, between 2005 and 2009, global market demand surged, making it difficult for supply to keep up. As manufacturing picked up post 2009, solar PV cell prices have continued their downward trend steadily. Now, it makes sense for companies to switch to PV cells purely based on economics.

As solar grows to become a more attractive option, we see a clear preference in its adoption over adding new wind capacity. Navigant Research has predicted in their recent report that declining prices will result in the global solar PV market exceed $134 billion by 2020 – a phenomenal increase of 50% from this year. That means a solar capacity addition of nearly 435 Gigawatts.

However, getting the maximum benefit from solar PV cells requires mounting them the right way. As the sun traverses the sky in the daytime, the PV cells must either follow the trajectory of the sun or be mounted in the most optimum way for them to catch most of the sunlight. Automatically turning the PV cells to face the sun requires elaborate sensing and expensive movement mechanisms. Therefore, most people prefer fixed installations that are simple to put up and maintain.

Another thing to consider is the latitude tilt of the location where you intend to install the solar cells. If your location is below the 25 degrees latitude, tilt the solar panel towards the sun the same amount as the latitude number. At 25 degrees latitude, your panel must tilt by 25 degrees. Above 25 degrees, you will need to add five degrees for each additional five degrees of latitude up to 40 degrees. At and beyond 40 degrees latitude, add 20 degrees of tilt to the latitude number. The above is the general thumb rule people follow for solar PV panel installation. Consequently, most installations have the solar panels facing south to catch the maximum amount of sunlight.

Researchers at the Pecan Street Research Institute have discovered ways to additionally fine-tune the positioning and tilt of the solar panels to extract somewhat more power. During their research on impact of residential solar power on the power grid, they discovered that if the solar panels faced west rather than the customary south, they could generate about 2% more power.

So long, homeowners, utilities and architects believed that in the northern hemisphere, solar panels directed south would receive the maximum exposure from the sun. However, when studying home installations in Austin, Texas, Pecan Street researchers found that this was not true. In fact, they noticed south-facing panels generating less energy. They found west-facing panels generated more power in the afternoon, when the energy demand peaked.

As energy demand peaks, a typical home in Austin using solar panels reduces its reliance on the power grid by as much as 54%. However, for homes with west-facing panels, this number shot up to 65% – a significant power saving. Therefore, by merely shifting the angle, you may be able to achieve significant gain in solar power generation.

How do photovoltaic cells work?

Your calculator probably has a darkish colored panel just above the display. The panel is made up of solar cells that power up your calculator if there is enough light. You may also have seen some solar panels, which people use for charging up their cell phones. Earlier, these solar cells or photovoltaic cells were exclusively used to power the electrical systems of satellites. However, they are now commonly used in less exotic ways as well.

How do photovoltaic cells convert light to electricity? For this, you must understand the way these cells are constructed. A photovoltaic cell has two silicon plates bonded together. Pure silicon is an insulating material and is unable to conduct electricity. This is because of the atomic structure of silicon, which has place for eight electrons in the outermost shell of its atoms. However, there are only four electrons present.

Therefore, when silicon atoms come together, they share their electrons. Each atom shares one electron with its neighbor and they become a pair. That means at any time, four atoms surround each silicon atom, bringing up its catch of electrons to eight on the outer shell. Since all the electrons are now bound up, there is none left free to move about and carry electric charge.

To make the silicon plates able to carry electric charge, one of the two plates must have some free electrons and the other plate must have some holes or lack of electrons. This is done by the process of doping. While making the plates, one of them is given a few phosphorus atoms as impurities. Since phosphorus has five atoms in the outermost shell of its atom, when combining with the silicon atoms, one of its electrons remains unpaired. This makes the silicon plate with the phosphorus impurity have excess electrons and this is called the n-type silicon.

Likewise, the other plate is doped with boron, which has only three electrons in the outermost shell of its atoms. This leaves the combination of silicon and boron atoms with a deficit of electrons and this is called the p-type silicon. This is like a hole, which will readily grab a wandering electron to fill up its vacant space.

Light is essentially a barrage of energetic particles called photons. Photons impart their energy to the surface where they land, which is why you feel warm when you stand in sunlight. If light or photons are allowed to fall on the n-type silicon plate that has extra electrons, they receive the excess energy from the photons. The extra energy allows them to dislodge themselves from their original positions and wander off until they come to the other plate with the holes, where they are eagerly absorbed.

However, the n-type silicon plate that supplied the electrons now has a deficiency of electrons that it must fill up. For electrons to flow, the circuit must be externally completed. This is usually done by connecting a load to the solar cell through external wires. The plate makes up its deficiency of electrons by borrowing them from the connecting wire. In essence, photons drive the electrons through the entire circuit, and that makes the current flow through the solar cell and the load connected to it.

As soon as light falling on the solar cell is removed, the running electrons lose their drive, and the flow of current stops. Although the output from each cell is usually very tiny, by combining them in series and parallel, an impressive amount of power can be generated.