Author Archives: K J

Precision RH&T Probe Using Chilled Mirror

The Aosong Electronic Co. Ltd, with a registered trademark ASAIR, is a leading designer and manufacturer in China of MEMS sensors. They focus on the design of sensor chips, the production of wafers, sensor modules, and system solutions. They have designed a sensor AHTT2820, which is a precision relative humidity and temperature probe.

ASAIR has based the design of AHTT2820 on the principles of a cold optical mirror. It directly measures humidity and temperature. Contrary to other methods of indirect measurements of humidity through resistance and capacitance changes, AHTT2820 uses the principles of a cold optical mirror. It can directly measure the surrounding humidity. It is an accurate, intuitive, and reliable sensor.

ASAIR uses a unique semiconductor process to treat the mirror surface of this high-precision humidity and temperature sensor. It uses platinum resistance to measure the temperature by sensing the change in the resistance due to a change in temperature. This gives the high-precision humidity and temperature sensor long-term stability, reliability, and high accuracy of measurement. The sensor features a fast response speed, a short warm-up time, and an automatic balance system.

Users can connect the sensor to their computer through a standard Modbus RTU communication system. It can record data, display the data, and chart curves. The precision RH&T probe provides direct measurement of temperature and dew point. Powered by USB, the split probe is suitable for various scenarios.

The AHTT2820 is a chilled mirror dew point meter that directly measures the dew point according to the definition of dew point. Various industries widely use it. They include food and medicine production industries, the measurement and testing industry, universities, the power electronics industry, scientific research institutes, the meteorological environment, and many others.

The probe uses its optical components to detect the thickness of frost or dew on the mirror surface. It uses the detection information for controlling the temperature of the mirror surface for maintaining a constant thickness of dew or frost. It uses a light-emitting diode to generate an incident beam of constant intensity to illuminate the mirror. On the opposite side, the probe has a photodiode for measuring the reflected intensity of the incident beam from the light-emitting diode.

The probe uses the output of the photodiode for controlling the semiconductor refrigeration stack. Depending on the output of the photodiode, the system either heats up or cools down the semiconductor refrigeration stack. This helps to maintain the condensation thickness of moisture on the surface of the mirror.

As it reaches the equilibrium point, the rate of evaporation from the mirror surface equals the rate of condensation. At this time, the platinum resistance thermometer embedded in the mirror measures the temperature of the mirror, and this represents the dew point.

Under standard atmospheric pressure, it is possible to obtain the related values of absolute humidity, relative humidity, water activity, and humid air enthalpy through calculation after measuring the ambient temperature.

The probe can measure temperatures from -40 to +80 °C, with an accuracy of ±0.1 °C. It measures humidity from 4.5 to 100%RH at 20 °C, with an accuracy of ±1%RH at <90%RH.

Advanced Solutions for Electric Vehicles

Although EVs or electric vehicles have existed in some form or the other for many hundred years now, it is only in the past few decades that technology has advanced and companies have found success. With concern over the effects of air pollution, climate change, and an ever-diminishing supply of fossil fuel, more and more people are considering changing over to EVs.

Consumer demand constitutes the basis of the growing popularity of EVs. The role of governments also helps by tightening their regulations and mandates in reducing carbon emissions with an effort towards reducing global warming.

The rapidly increasing rate of growth of EVs is presenting a huge opportunity not only for EV manufacturers alone, but also for OEMs, and suppliers of aftermarket parts. Although there has been a significant advancement in EV technologies and solutions over the past few decades, there are still a few challenges that must be overcome, and which can quickly become hindrances. Manufacturers must develop new and innovative ways of addressing these challenges if they want to continue on the path to success.

At present, there are three important considerations that most consumers stipulate manufacturers must overcome—range anxiety, performance, and cost.

Even among modern EVs, many could not go very far without their batteries needing a recharge. For most people, this range was too small to seriously consider a changeover to fully electric vehicles. Although battery and motor technology have advanced significantly, range anxiety is still a factor.

Even two decades ago, EVs were struggling to match the performance and power of fossil-fuel-powered vehicles.

As with any new technology, EVs were initially expensive. Typically, modern EVs were far beyond the reach of most people, or what people were willing to pay for them.

Although car manufacturers are actively addressing the above challenges, an EV that is affordable enough for most consumers and does not compromise on performance, and one that requires only a single charge a month, is still only a mirage. Right now, manufacturers are busy balancing tradeoffs between range, performance, and cost. For instance, improving the performance affects range and cost, while cutting costs can severely compromise range and performance.

Fortunately, manufacturers are finding enhancing efficiency to be the key to the solution. For instance, the primary bottleneck to improving range is the capacity of the battery. Although the obvious solution is to use a bigger battery, that complicates matters further. Not only do bigger batteries cost more, but they also weigh more. Therefore, a bigger battery while increasing the vehicle’s cost can also decrease its performance.

Therefore, manufacturers are looking for ways to use the existing battery more efficiently. They are reducing the energy losses occurring naturally in the power-conversion system of the vehicle. This is mainly as lost energy in the form of heat in the EV’s motor, powertrain, and the power-electronics systems in the vehicle.

Weight is another factor affecting performance—a lightweight vehicle has superior performance. Therefore, manufacturers are trying for higher power density, where they add more power to the vehicle without increasing its weight. With lighter batteries and power-conversion systems, the vehicle can achieve better performance and speed.

3-D Electrodes in Solid-State Batteries

Addionics is an Israeli startup in the rechargeable business. It is recently engaging in redesigning the battery architecture with respect to its electrode technology. The company wants to replace the regular 2-D electrode layer structure in traditional batteries. They want to integrate a 3-D electrode structure. They claim this will provide greater power and energy density, while also extending the life of the battery.

Addionics has five commercial projects lined up. They are presently targeting automotive applications with leading suppliers. The aim of each of these projects is to focus on different battery chemistries and integrate them with the smart 3-D electrode structure. The chemistries they are targeting are solid-state batteries, lithium polymer batteries, silicon anode batteries, lithium iron phosphate batteries, and lithium nickel manganese cobalt oxide batteries.

With the global economy striving towards electrification due to rising greenhouse gas emissions and climate change, the need for replacing renewable energy use, energy storage, and EV adoption is increasing. However, this can succeed only if there are batteries available that are more efficient, safe, and cost-effective.

Scientists all over are devoting huge efforts and expenditures to developing the next generation of batteries. They typically focus on battery chemistry, new chemicals, and unique chemical formulations. This includes lithium-metal and lithium-sulfur.

They are also trying to make current batteries either store more energy or charge/discharge at a faster rate. However, current batteries available in the marketplace today do not have the capacity to deliver both quick charging and extended range for EV applications.

There is also a challenging mismatch between the anode and cathode in current batteries. Addionics is striving to improve battery performance with their technology. They claim their 3-D electrode technology will improve battery performance irrespective of battery chemistry, and do so without increasing the battery price.

Although solid-state batteries hold plenty of promises, their major problem is the mismatch in the anode and cathode capacity. The new technology from Addionics has the advantage of not only solving the electrode mismatch but also providing a solid-state battery with higher energy and more stable performance.

Traditionally, battery electrodes are a 2-dimensional structure, made of dense metal foils with the active material as a layer on the top. However, this 30-year-old design is no longer able to meet the growing demands of performance.

The new 3-D electrode structure lowers the internal resistance of the battery, even at higher loads, as it has the active material integrated throughout the electrode. This increases the active surface area of the battery cell architecture and improves the properties of the electrodes, leading to lower heat generation, less material expansion, improved conductivity, and enhanced energy density in the battery.

The company claims that its new 3-D electrode technology offers significant advantages for any existing or emerging battery chemistry. They claim their new electrodes can reduce the charging time, extend its drive range, and improve the safety and lifetime of the battery. Moreover, the new electrodes do not change the battery size or its components. They also claim their new technology significantly lowers the manufacturing costs of any battery, irrespective of the battery chemistry.

Anechoic Chambers for RF and Electromagnetic Testing

As the meaning of anechoic is ‘without echo’, an anechoic chamber represents a room that has minimal wave reflections from the floor, ceiling, and walls. Anechoic chambers are, therefore, suitable for testing Radio Frequency or RF, electromagnetic interference or EMI, and electromagnetic compatibility or EMC. Special materials on the floor, ceiling, and walls of the chamber help to absorb electromagnetic waves.

Another type of anechoic chamber is suitable for audio waves. The design of such chambers is meant for testing audio recording. The floor, ceiling, and walls have special material and their design helps to absorb sound waves.

A wide range of application areas requires accurate measurements of the electromagnetic spectra. For instance, the testing of an antenna requires measuring the electromagnetic energy levels that it is sending or receiving in all directions. Engineers call this the radiation pattern of the antenna, and the pattern can be in three dimensions, or in the principal plane.

When testing an antenna in an anechoic chamber, engineers use a reference antenna for transmitting a known level of power. They rotate the antenna under test to a known angle and allow the measurement system to record the power it receives. By rotating the position of the antenna under test to a different angle, they can take another measurement of the power it is now receiving. By combining all the measurements, they can form a polar plot representing the radiation pattern in that elevation or azimuthal plane.   

Conducting this exercise in the open area test site offers several disadvantages.

The test environment may have extraneous electromagnetic waves that the antenna can pick up along with the test signal. This will introduce errors in the measurement. A variety of sources can supply these extraneous waves, including air traffic, cell phones, FM radio transmitters, and more.

Moreover, weather conditions like rain and wind may also easily affect outdoor measurements of electromagnetic radiation.

Additionally, there can be reflections from nearby structures and the floor. The antenna under test will likely pick up these unwanted reflections as well.

Testing inside an anechoic chamber helps engineers avoid the above disadvantages. Typically, anechoic chambers use metal walls as a shield for preventing external radio signals from impinging on equipment inside the chamber. Special RF absorbing materials on the interior walls, floor, and ceiling of the chamber help in absorbing unwanted reflections of radio waves.

In fact, a shielded and non-reflecting anechoic chamber represents an infinitely large room, where the reflections do not reach the device under test, thereby enabling repeatable and accurate measurements.

Available anechoic chambers range in size from a typical room to a small tabletop enclosure. In fact, some anechoic chambers are so big engineers can easily walk inside, while some are as large as an aircraft hangar.

Pyramidal foams with a loading of conductive carbon often cover the internal surfaces of anechoic chambers. The tapered structure of the pyramidal shapes ensures minimal wave reflections for radio waves hitting them, while the presence of conductive carbon helps to absorb the waves. The RF absorbing material converts the absorbed incident electromagnetic energy to heat.

TI Driver for BLDC Motors

When simple motors were more frequently used, it was relatively easy to design products with them. Controlling such motors was simple, whether it was a brushed DC motor or a single-phase AC motor. There was no need for sophisticated hardware or software for designing a product with a motor.

However, sophisticated BLDC or brush-less DC motors are replacing most of the above motors because of several advantages like quiet operation and high efficiency. But these advantages come at the cost of design knowledge and effort, requiring both hardware and software development. Texas Instruments has developed a new integrated circuit that allows designers to achieve all the benefits easily from these motors.

The biggest benefit offered by BLDC motors over older designs is their improved power efficiency. Most government regulators today demand that electrical products meet strict efficiency standards. In most cases, meeting these requirements is possible only through the use of BLDC motors.

Motors are mechanical devices and therefore, they make noise when operating. Although the quiet operation is not usually a design goal for most products, using a BLDC motor offers a way to achieve low noise operation.

There are further advantages to using BLDC motors. One of them is low voltage operation, and the other is a longer life. Manufacturers of BLDC motors are now offering them in larger sizes for use in bigger products.

As stated earlier, BLDC motors are now replacing brushed DC motors and in some cases, AC motors as well. Some practical examples are robotic vacuum cleaners, pumps, fans, washing machines, humidifiers, and air purifiers. They are useful for multiple automotive devices as well.

Functionally, a BLDC motor works under the same principles that govern the operation of all motors—rotation is from the interaction of two magnetic fields, one fixed and the other movable. Frequently, the BLDC motor will have multiple stator coils embedded in the periphery of the motor assembly. With the stator coil wired into three groups, it performs as a three-phase motor does. The rotor on the BLDC motor consists of several permanent magnets rotating in the circle formed by the stator coils. The user only has to apply a sequence of pulses to the stator coils.

The timing of the pulses must match their interaction with the permanent magnets. The control circuitry that drives the stator coils gets the correct timing from multiple sensors indicating the orientation of the rotor. These sensors are mostly Hall-effect devices that produce signals that the controller requires for moving the magnetic fields on the stator coil.

There are numerous variations of the approach to control the BLDC motor. One of them is a sensor-less method using the back electromotive force the rotating rotor magnets induce into the stator coils. The sensor-less method typically reads the feedback voltages in the motor stator winding and processes them into control signals.

Many motor controllers are pre-programmed and packaged BLDC motor control modules. This is usually satisfactory for common applications. Others, however, require a custom design. The MCF8316A from TI is a single chip BLDC motor controller chip that only requires inputs for speed, direction, and torque. The IC takes care of the rest.

Battery Electrolyte from Wood

Although there exist several types of batteries, all of them function with a common concept—batteries are devices that store electrical energy as chemical energy and convert this chemical energy into electricity when necessary. Although it is not possible to capture and store electricity, it is possible to store electrical energy in the form of chemicals within a battery.

All batteries have three main components—two electrodes or terminals made of different metals, known as anode and cathode, and the electrolyte separating these terminals. The electrolyte is the chemical medium allowing the flow of electrical charges between the terminals inside the battery, When a load connects to a battery, such as an electrical circuit or a light bulb, a chemical reaction near the electrodes creates a flow of electrical energy through the load.

The most commonly used battery today, the lithium battery, typically uses a liquid electrolyte for carrying electrical charges or ions between its electrodes. Scientists are also looking at alternatives like solid electrolytes for future opportunities. A new study offers cellulose derived from wood as one type of solid electrolyte. The advantage of this solid electrolyte from wood is its paper-thin width, allowing the battery to bend and flex for absorbing stress while cycling.

The electrolyte presently in use today in lithium cells has the disadvantage of containing volatile liquids. There is thus a risk of fire in case the device short-circuits. Moreover, there is the possibility of the formation of dendrites—tentacle-like growths—and this can severely compromise the battery’s performance. On the other hand, solid electrolytes, made from non-flammable materials, allow the battery to be less prone to dendrite formation, thereby opening up totally modern possibilities with different battery architecture.

For instance, one of these possibilities involves the anode, one of the two electrodes in the battery. Today’s batteries usually have an anode made from a mix of copper and graphite. With solid electrolytes, scientists claim they can make the battery work with an anode made from pure lithium. They claim the use of pure lithium anode can help to break the bottleneck of energy density. Increased energy density will allow planes and electric cars to travel greater distances before recharging.

Most solid electrolytes that scientists have developed so far are from ceramic materials. Although these solid electrolytes are very good at conducting ions, they cannot withstand the stress of repeated charging and discharging, as they are brittle. Scientists from the University of Maryland and Brown University were seeking an alternative to these solid electrolytes, and they started with cellulose nanofibrils found in wood.

They combined the polymer tubes they derived from wood with copper. This formed a solid ion conductor with conductivity very similar to that in ceramics, and much better than that from any other polymer ion conductor. The scientists claim this happens as the presence of copper creates space within the cellulose polymer chains allows the formation of ion superhighways, enabling lithium ions to travel with substantially high efficiency.

With the material being paper-thin and thereby highly flexible, scientists claim it will be able to tolerate the stresses of battery cycling without damage.

Improving Computer Vision with Two AI Processors

Computer vision is becoming a necessity in IoT and automotive applications. Engineers are trying for the next level in computer vision with two AI processors. They hope that two AI processors will help to make computer vision not only more efficient but also more functional.

One of the fastest-growing applications of artificial intelligence, computer vision is jostling for attention between prestigious fields like robotics and autonomous vehicles. In comparison to other artificial intelligence applications, computer vision has to rely more on the underlying hardware, where the underlying imaging systems and processing units overshadow the software performance.

Therefore, engineers are focusing on cutting-edge technology and state-of-the-art developments for the best vision hardware. Two companies, Intuitive and Syntiant, are now making headlines by supporting this move.

Israeli company, Intuitive, recently announced that its NU4000 edge Artificial Intelligence processor will be used by Fukushin Electronics in their new electric cart, POLCAR. The processor will allow the cart to have an integrated obstacle detection unit.

Requiring top performance and power efficiency when operating a sophisticated object detection unit in a battery-powered vehicle like an electric cart made Fukushin use the NU4000. The edge AI processor from Intuitive is a multicore System on a Chip or SoC that can support several on-chip applications. These include computer vision, simultaneous localization and mapping or SLAM, and 3d depth-sensing.

The NU4000 achieves these feats by integrating three Vector Cores that together provide 500 COPS. There is also a dedicated CNN processor offering three CPUs, 2 TOPS, a dedicated SLAM engine, and a dedicated depth processing engine. Intuitive has built this chip with a 12nm process, and it can connect up to two displays and six cameras with an LPDDR4 interface.

With a small form factor and low power consumption, the NU4000 is a powerful processor providing several key features that could make the obstacle detection unit a special application for Fukushin’s POLCAR.

California-based Syntiant was in the news with their Neural Decision Processor, the new NDP200. Syntiant has designed this processor for applications using ultra-low-power, especially useful for deep learning. With a copyrighted Syntiant core as its core architecture, it has an embedded processor, the ARM Cortex-M0. With this combination, the NDP200 achieves operating speeds up to 100 MHz.

Meant for running deep neural networks like RNNs and CNNs, Syntiant has optimized the NDP200, especially for power efficiency. Deep neural networks are necessary for computer vision applications.

Syntiant claims NDP200 performs vision processing at high inference accuracies. It does this while keeping the power consumption below 1 mW. Judging its performance, the chip could reach an inference acceleration of more than 6.4 GOP per second, while supporting more than 7 million parameters. This makes the NDP200 suitable for edge computing of larger networks.

Syntiant expects its chip will be suitable for battery-powered vision applications, such as security cameras and doorbells. In fact, the combination of the chip’s capability to run deep neural networks and power efficiency can allow it to take the next evolutionary step towards creating a better processor for computer vision applications.

Low-Power Circuit Timing using SPXOs

A wide range of electronic devices relies on circuit timing as a critical function. These include microcontrollers, Bluetooth, Ethernet, Wi-Fi, USB, and other interfaces. In addition, circuit timing is essential for consumer electronics, wearables, the Internet of Things (IoT), industrial control and automation, test and measuring equipment, medical devices, computing devices and peripherals, and more. Although designing crystal-controlled oscillators seems an easy process for providing system timing, there are numerous design requirements and parameters that designers must consider when matching a quartz crystal to an oscillator chip.

Among the several considerations are the negative resistance of the oscillator, its drive level, resonant mode, and the motional impedance of the crystal. When the designer is making the circuit layout, they must consider the parasitic capacitance of the PC board. They must also consider the on-chip integrated capacitance, and include a guard band around the crystal. Finally, the design must not only be compact, with a minimum number of components, and reliable. While the circuit must be capable of operating with a wide range of input voltages, consuming minimal power, it must also have a small root-mean-square jitter.

An optimal solution to the above is to use simply packaged crystal oscillators or SPXOs. Manufacturers optimize SPXOs for low RMS jitter and minimal power consumption. These devices can operate with any supply voltage ranging from 1.6 VDC to 3.6 VDC. With these continuous-voltage oscillators, designers can implement solutions requiring minimal effort while integrating them into digital systems.

In small, battery-powered, wireless devices, power consumption is always a very important consideration. That is why designers prefer to base such devices on the system on a chip or SoC processor that consumes very low power to support battery lives of several years. Moreover, device cost depends on the battery size, as the battery is easily the most expensive component in the device—minimizing the battery size is, therefore, an important factor in small wireless devices. For battery life consideration, one of the important parameters is the standby current, apart from the self-discharge current of the battery. Minimizing the current drawn by the clock oscillator is important, as this is greater than the standby current.

Designing low-power oscillators can be challenging. Designers are tempted to save energy by allowing the circuit to enter a disabled state for minimizing the standby current while starting the oscillator when needed. However, this is not an easy task as starting crystal oscillators quickly is not a simple and reliable task. Reliable start-up conditions require careful design efforts when designers attempt it across all environmental and operating conditions.

Most low-power wireless SoCs favor the Pierce oscillator configuration. The circuit has crystal and tow load capacitors. It uses an inverting amplifier that has an internal feedback resistor. With the amplifier feeding back its output to its input, the right conditions cause a negative resistance to start the oscillations going.

Quartz crystal oscillators can have jitters caused by power supply noise, improper load, improper termination conditions, the presence of integer harmonics of the signal frequency, circuit configurations, and amplifier noise. The designer must use several methods to minimize jitter.

Cooling Modes in Electronic Loads

Applications based on renewable energy are thriving. This is leading to a requirement for increased testing of devices that generate renewable DC power—devices like solar panels, fuel cells, and batteries, to name a few. This testing is typically by employing electronic loads, mostly programmable and with a design that can draw various specified amounts of power from the source. In the lab or on the production floor an electronic load is the most suitable instrument to characterize devices producing DC output.

Selection of an electronic load requires careful consideration of several options like the voltage, current, and power ratings; operating modes; cooling methods; transient response times; calibration techniques; computer interfaces; and protective features.

Starting with the choices for voltage, current, and power ratings, most users also look for subtleties like the need for a load capable of sinking high currents at very low voltages. The cooling method is typically based on power rating, either a water-cooled device or an air-cooled one. Air-cooled loads have the advantage of flexibility—they can be self-contained, capable of being moved anywhere in the facility without the need for plumbing. On the other hand, water-cooled loads are smaller and less expensive as compared to air-cooled loads of the same power rating. Moreover, water-cooled loads will not load the HVAC system with extra heat generation. Usually, the HVAC system may not consider a 1 kW air-cooled load as a burden, but a 50 kW air-cooled load will certainly tax the HVAC system.

A number of factors determine the exact power level above which a user might consider a water-cooled load as preferable. Apart from the application, this might include the space and facility available. Most programmable electronic loads employ field-effect transistors or FETs. According to a rule of thumb, the air-cooled design uses only 50% of the capacity of each FET, and a water-cooled design uses up to about 85%. This results in a 35% saving in the number of FETs at a given power level for a water-cooled load. Not only does this lead to a reduction is costs, but also space requirements. For instance, at a 7.5 kW rating, an air-cooled load can cost roughly twice as much for a water-cooled load.

On the other hand, water-cooled loads lack the flexibility that is inherent in an air-cooled unit. Moreover, to use a water-cooled load, the user must install a water-cooling infrastructure, such as a chiller and associated plumbing. Depending on the layout of the user’s facility, this might be a costly and difficult task. Moreover, a chiller may need an expansion in the future, and the plan must accommodate it.

Operating modes need consideration next. Broadly, electronic loads operate in two modes—constant current and constant voltage. The constant current mode allows the load to sink a specific current, irrespective of the input voltage, provided the load’s specifications are not exceeded. In the constant voltage mode, the load will sink variable amounts of current to maintain a constant voltage at its input. Some loads will also offer additional modes like constant-power and constant-resistance modes.

A Bending and Stretching Battery

All electrical and electronic equipment we use in our daily lives requires power to operate. Movable equipment depends on batteries for their mobility. We are used to various types of batteries, like dry cells, lead-acid batteries, rechargeable Ni-Cd and Li-Ion batteries, and so on. However, all the batteries in common use are rigid, non-flexing structures. That may be changing now, as some researchers have claimed to have created a battery that is flexible and stretchable like a snake but unlike a snake, totally safe for humans.

Researchers in Korea claim to have developed a new type of battery that is flexible and stretchable with smooth movements imitating the movements of scales on a snake’s body. However, they have issued assurances that the battery is totally safe for use. This flexible and stretchable battery has a range of applications in contoured devices like wearables and soft robotics.

Although individual scales on the body of a snake are rigid, they can fold together to offer protection against enemies and external forces. The structural characteristics of the scales allow them to move alongside other scales, offering flexibility and stretching capabilities to the snake’s body. At the Korea Institute of Machinery and Materials, researchers from the Ministry of Science and ICT decided to replicate the reptilian characteristics in a mechanical meta structure.

Most conventional wearable devices have the battery in a tight formation with the frame. The new device has several small and rigid batteries in series and parallel connections within a scale-like structure. The researchers ensure the safety of the battery by optimizing its structure so that there is minimum deformation of each battery. They have even optimized the shape of each cell in the battery to offer the highest capacity per unit area.

The connective components and the shape of the battery cell hold the key to this unique device. Each cell is a small hexagonal, resembling the scale on a snake. The researchers have connected each cell with polymer and copper, and there is a hinge mechanism to allow folding and unfolding.

With an aim to mass production in the future, the researchers claim the batteries can be cut and folded with flexible electrodes, with Origami inspiring their manufacturing process.

Wearable devices for humans requiring soft and flexible energy storage can make the best use of these flexible batteries. Another application might be in rehabilitation medical devices for the sick and elderly requiring physical assistance. Soft robots can make use of these flexible batteries as power supply devices at disaster sites when conducting rescue missions. With their ability to freely change shape and move flexibly, these soft robots can move through blocked narrow spaces unhindered by flexible batteries.

Senior researcher, Dr. Bongkyun Jang co-led the research team has commented that mimicking the scales of a snake helped the researchers to develop a flexible battery, making it stretchable and safe to use. The researchers hope that in the future they can develop more soft energy storage devices while boosting their storage capacity. They also hope to develop multi-functional soft robots offering a combination of artificial muscle with actuation technology.