Tag Archives: Internet of things

Do It Yourself Blynk Board

Those who have some experience with Do It Yourself (DIY) electronic projects, and are just starting to test the waters in the Internet of Things (IoT), the Blynk Board from SparkFun is an activity filled challenging exercise. Both experienced users as well as beginners will find this fun to set up and learn—the kit comes with more than ten projects.

Of course, you can make this board work without the IoT Starter Kit from SparkFun, but then you will have to buy the sensors and other components separately to complete the projects. The Blynk Board, based on the ESP8266, runs on a 32-bit L106, a RISC microprocessor core running at a speed of 80 MHz. It has 1 MiB flash built-in, and allows single-chip devices to connect with Wi-Fi, IEEE 802.11 b/g/n. The board has the TR switch integrated, LNA, balun, power amplifier, matching network WPA/WPA2 or WEP authentication, and can connect to open networks. Other features include 16 GPIO pins, I2C, SPI, I2S, UART with dedicated pins, and a UART (transmit-only) capable of being enabled from GPI02. The board also has a 10-bit successive approximation ADC.

Blynk Boards, based on the ESP8266, come preloaded with projects that are ideal for those just beginning on the Internet of Things and concepts of basic electronics. Arduino boards used it originally for implementing Wi-Fi enabled hardware projects; the ESP8266 has built-in Wi-Fi, making it a cheap, Arduino-compatible, and standalone development board. Many other kits use this board in different shapes and sizes, and you will find it in SparkFun ESP8266 Thing, Adafruit HUZZAH, and NodeMcu.

As the ESP8266 is useful as an open source hardware, it is a useful device for starting with the Internet of Things. It makes the Blynk Board an ideal platform for controlling single board computers such as the Raspberry Pi, and Arduino. Basically, the Blynk consists of three components—a Blynk app for smartphones, the Blynk library, and the Blynk server. The library is compatible with a large number of maker hardware.

While the Blynk library and Blynk server are open source, anyone can use the Blynk app on iOS and Android smartphones. With the Blynk app, you can build a graphical interface for any IoT project—simply drag and drop the widgets. Blynk offers several widgets such as LC display, buttons, and joystick, with which you can start hacking and you need only an IoT development board.

After collaborating with SparkFun, Blynk created the ESP8266 based SparkFun Blynk Board. They offer it fully programmed for more than ten Blynk projects. That makes the IoT Starter Kit from SparkFun with the Blynk Board such a fun project, offering a wonderful introduction to the Internet of Things technology and you do not have to learn any difficult programming.

For those who already have other ESP8266 development boards, simply reprogramming them with the firmware will turn them into DIY Blink Boards. With these, you can easily run boot camps or conduct workshops. Just adding the sensors and a few other components will help you complete the built-in projects, and these you can buy from SparkFun.

Things Gateway Ties IoT Devices Together

Project Things from Mozilla is a framework of software and services. It helps to bridge the communication gap between IoT devices. Project Things does this by giving each IoT device a URL on the web. The latest version of the Things Gateway, also from Mozilla, can directly let you control your home over the web, and manage all your devices through a single secure web interface. Therefore, if you have several smart devices in your home, you will not need different mobile apps to manage each of them. The best part of the Things Gateway is you can easily build one on a single board computer and use the power of the open web to connect off-the-shelf smart home products immediately, even if they are from different brands.

DIY hackers will find many exciting new features in the latest version. It even includes a rules engine, where you can set ‘if this, then that’ style of scenarios for making up rules of how things should interact. Other features include a floor plan view for laying out the devices on a map of your house, an experimental voice control, and it supports several new types of IoT devices. If you have a new device requiring new protocols, there is a brand new add-ons system. Third party applications that want to access your gateway can now do so, as there is a new way to authorize them safely.

On the hardware side, you will need a single board computer. Although Mozilla recommends a Raspberry Pi 3, any single board computer will do, as long as it has Wi-Fi and Bluetooth support built-in. Access to GPIO ports is also necessary, as you will require direct hardware access. Although a laptop or desktop computer will also work here, using the single board computer will provide the best experience.

If your smart home devices use other protocols such as Zigbee or Z-Wave, you will also need a USB dongle. Things Gateway supports Zigbee with Digi Xstick and for Z-Wave you will have to use a dongle compatible with OpenWave. You will need the proper device suitable for your region, as Z-Wave operating frequencies vary for different countries.

For the software part, you will need at least a 4 GB micro SD card to flash the software. The Gateway already has support for several different smart sensors, plugs, and smart bulbs from various brands, which may be using Wi-Fi, Z-Wave, or Zigbee. The Wiki mentions all the tested parts, and you can contribute if you have tested other new devices. However, if you are not yet ready with the actual hardware of IoT devices, and want to try out the Gateway software, the Virtual Things add-on us your friend. Simply install it and start adding virtual IoT things to your Gateway.

Mozilla offers the Things Gateway software image for the Raspberry Pi, which you can download and flash onto the micro SD card. The safest way to do this is to use Etcher, a cross-platform image writer software, useful for Linux, Windows, and the Mac OS.

Progress in the World of Internet of Things

Although many in the electronics field lambast the Internet of Things (IoT) as an inappropriate or inadequate acronym, IoT is a space to huge to be confined to these narrow adjectives. In reality, IoT requires a blanket description, as it covers a vast arena. Problems arise from compartmentalization and although various spaces such as industrial and medical have established a big head start, others have yet to launch their true separate identities.

For the electronics designer this means taking the general palette of IoT features and functionalities and tailoring them specifically to the application at hand. The designer must be knowledgeable about state-of-the-art technologies such as those required for cloud connectivity, wireless design infrastructure, interface ergonomics, and internal power management. The designer must be familiar with the methods of manifesting them in their design, as these may be critical aspects.

For instance, there are several suggestions for scaling the IoT from smart factories to smart homes. Although there are blueprints for pollution reduction, city traffic management, and electrical energy distribution, the purveyors of industrial-grade operating systems do not yet have a detailed plan for the smart home.

According to Wei Tong, Product Marketing Manager of Dialog Semiconductors, wearable technologies can do far more than simply functioning as personal items. Using Bluetooth, a communications standard protocol, wearable devices can connect to a larger network, allowing them to communicate with other devices via beacons and sensors, thereby manifesting the larger Internet of Things.

However, despite the birth of the phrase “the Internet of Things” 18 years ago, and the first connected IoT device 35 years ago, consumers are yet to adopt wearable IoT in mass quantities. According to Nick Davis, this is due to two factors—first, ease of use, or lack thereof, and second, lacking the purpose or serving the wrong purpose.

For instance, take the case of “smart” light bulbs. Some are easy to connect to and control with smartphones, while others give users a hard time. According to Nick Davis, once people face such difficulties, they tend to give up on the entire IoT and smart device concept.

Another example Nick Davis gives is that of a smart toaster or smart refrigerator and the purpose they serve. According to Nick, most companies have not done proper market research into the actual requirement of people who use toasters and refrigerators, and what the consumers expect in such smart devices. However, several new products on the market are potentially useful to designers.

Another example of wrong purpose is the video sunglasses from Snap, the parent company of Snapchat. These are basic sunglasses with a video camera attached. They allow users to capture and post videos more easily to Snapchat. According to Nick, Snap is stuck with hundreds of thousands of their unsold spectacles. Apparently, Snap did not realize that people are not very keen on walking around taking videos with their eyewear.

Despite such debacles above, newer products are appearing on the market that help designers achieve better energy-efficient IoT products, voice recognition engines, and flexible and smart motor-control options that are also lightweight and compact.

Extending IoT with the Raspberry Pi

Recently, the Raspberry Foundation has updated its embedded Compute Module with a faster ARM processor. This will help developers and businesses build new IoT devices. The new Compute Module 3 (CM3) comes with a powerful new option and embedded compute capabilities for device makers interested in the Internet of Things (IoT).

Although not to be confused with the Single Board Computer, the Raspberry Pi (RBPi), with which the CM3 also shared the latest update, is a tiny form-factor ARM-powered SBC originally developed to help both kids and adults learn computer programming.

Launched with the same form factor as that of the RBPi, the CM3 was specifically targeted at business and industrial users. While the RBPi is a completely standalone device, the CM3, on the other hand, is a module intended for plugging into a separate Printed Circuit Board. The primary aim of the Compute Module is to let vendors and developers develop customized products quickly.

The new CM3, like the RBPi3, also uses the same Broadcom system-on-chip (SoC), the ARM BCM2837. The ARM Cortex A53 design forms the base for the SoC BCM2837, which is a 1.2 GHz, quad-core chip running on 64 bits. As a bonus, the standard CM3 has an on-module eMMC flash memory of 4 GB.

Other than the standard CM3, the Raspberry Pi Foundation also has a CM3L or Compute Module 3 Lite version. With the CM3L, users can wire up their choice of an SD card interface or eMMC memory. While the CM3L also comes with the same BCM2837 SoC, the on-board RAM is still restricted to 1 GB only.

Along with the CM3 and the CM3L, the Raspberry Pi Foundation is also releasing the new Compute Module IO Board V3 (CMIO3). This will provide developers with a starter breakout board to which they can connect their Compute Module.

The CMIO3 offers designers a starting template for designing with the Compute Module, providing them with a quick method to experiment with the hardware and to build and test a system. Once the experiment succeeds, they can proceed with the expense of fabricating a custom board. The CMIO3 also provides the necessary USB and HDMI connectors to make up the entire system that boots up and runs the Raspbian OS, or any other OS you select.

Although the Raspberry Pi Foundation has only recently released new Command Modules, next generation large-format displays based on the modules are already available from the consumer electronics vendor NEC, as they had early access to them.

The idea behind the Compute Modules is to provide a cost-effective and easy route to making customized products using the hardware and software platforms of the RBPi. The modules provided the team in the garage the same technology that the big guys already had. The Module takes care of the complexity of routing the core power supply, the high-speed RAM interface, and the processor pins, while allowing a simple carrier board provide the basics in terms of form factor and external interfaces. The form factor of the module follows that of the inexpensive, easily available, standard DDR2 SODIMM.

IOT: The Internet of Things Helps Manage Decisions

In any era, one of the characteristics of a good leader has always been their ability to take a good decision with the limited information available to them. According to the 26th US President Theodore Roosevelt, the best thing to do in a moment of decision is doing the right thing, the next best thing is doing the wrong thing, while the worst that anyone can do is doing nothing. This brings us to the IOT

Expectations are the Internet of Things (IoT) will be networking billions upon billions of things someday. Even if considering this hype, there is no ignoring the fact that IoT is already affecting management decisions worldwide. Business managers, at all levels, are receiving information that is more relevant as soon as they need it. Connected devices are making this possible, coupled with advances in collection of data and analytics. All that is affecting the decisions they are making, and business performance and operation is seeing a deep and lasting impact.

The broad range of nascent and mature technology available with the Internet of Things ranges from microscopic sensors called smart dust, to autonomous robots, to remote monitoring and RFID tags. Predictions from Gartner forecast that from the 6.4 billion connected IoT devices in 2016, the year 2020 will witness a jump to 21 billion devices worldwide. That means over the next five years, the number of internet-connected things will swell by three times.

Keeping this explosive growth in mind, Industry Week has conducted a study—the Industry Week Industrial Internet of Things Analytics Research Study. It gauges the usage of present and future state of IOT technology by US manufacturers. It also includes a special focus on data collection and analytics, as the IoT is more about the ability to collect, analyze, and use the massive amounts of data generated by the devices rather than about the devices themselves.

For their research, Industry Week has defined the Internet of Things as products and machines containing embedded electronics and sensors, with software for network connectivity that enables control and remote data collection. They also define analytics as the process of extracting insights from raw data, enabling better decision making.

The study reveals more than half the manufacturers reporting they are currently using the IoT technology for collecting machine data. Other companies say they are collecting the data from sensors embedded within their products—the percentage here is smaller, but significant at 44%. Both groups are using the data from machine and product for generating management reports and for performing root cause analysis as and when problems crop up.

According to the study, less than 25% of the manufacturers are using IoT for purposes that are more proactive. This includes improving business decision making through data mining or development of optimization models. All this indicates the presence of a potential source of competitive advantage as well as a huge opportunity.

Surprisingly, about one third of the manufacturing leaders said they did not have any strategy specifically geared towards the Internet of Things. However, most of these manufacturers reported their senior leaders are driving the organizations to be more data centric and analytical.

Use the Raspberry Pi for the Internet of Things

Barriers are coming down between operational technologies. Barriers such as were existing between industrial hardware and software for monitoring and controlling machines and the ERP systems and other information technology people typically use when operating and supporting their business. Manufacturers are having an exciting time as new opportunities are emerging every day for improving the productivity. Along with the rise in the challenges, there are innovations in creating new sources of customer value.

Data is not a new thing for manufacturers. In fact, there was enough data with manufacturers long before the Internet of Things and Big Data came into existence. Although manufacturers have been collecting and analyzing machine data for ages, they can now replace their legacy equipment and systems. With the explosion of the Internet of Things, the flow of data on the customers’ side is also ramping up. Networked products are tightening the connection between customers and manufacturers, with service capabilities expanding and creating entirely new revenue models.

With every organization wanting to participate in the Internet of Things, and IT professionals wanting to know how to add IoT skills to their resume, it is time to look at the different options for learning about IoT. Although there are many ways to gather this knowledge, nothing really can beat the hands-on experience.

The tiny single board computer, the Raspberry Pi or RBPi is one of the key learning platforms for IoT. Not only because this involves very low cost, but also because it offers a complete Linux server in its tiny platform. When you use the RBPi for learning about IoT, you will find that the most difficult thing to face is the picking the right project to make a start.
On the Web, you can find several thousand projects based on the RBPi. They involve the ambitious types, silly types, while some are really great for learning about Linux, RBPi, and the intricacies of the IoT.

When starting out with IoT projects and the RBPi, it is prudent to keep to a boundary – use some common sensors and or controller types. Custom-built hardware is fine for geeks, but for those who are just starting out with IoT, going wild with hardware builds can lead you astray.

While selecting a project, choose one that has something interesting going on for the control software. While it would be foolish to start with an epic development project, just to make a meaningful learning experience, simply calling pre-existing scripts and applications is also likely to cause a loss of interest.

Choose a fun project to start with. Of course, you will be training for the IoT. Nevertheless, training in the form of drudgery is no fun. Therefore, select a project that will want to make you move forward and continue your journey with the education.

You can buy individual sensors from the market and hook them up to your RBPi. However, as a beginner, you might be well off buying a kit for a specific use such as a single wire temperature sensor or a humidity sensor. Later, when more confident, you could move on to Hardware Attached on Top or HATs for the RBPi.

Low-Power GPU for IoT

The Mali Graphical Processing Units or GPUs from ARM are popular because of their cost efficiency. ARM has optimized them to provide energy efficient, high performance graphics in the smallest possible area of silicon. As a result, not only low- to mid-range smartphones, but also tablets and DTVs are also using Mali cost efficient GPUs as ARM offers a diverse selection of scalable solutions involving both graphics-only and graphics plus GPU Compute technology.

ARM offers the Mali-400MP, which is the first OpenGL, ES 2.0, multi-core GPU with leading area efficiency and the Mali-450MP, which offers approximately twice the performance of the Mali-400MP. However, these are not suitable for the Internet of Things, as these devices require extremely low levels of energy consumption. For the IoT, ARM has released a new low-power GPU. Useful for wearable and other IoT gadgets, the new 32-bit Mali-470MP from ARM claims smartphone-quality graphics, while requiring only half the power used by the Mali-400MP, using the same process geometry.

For cutting the power consumption in the Mali GPUs, ARM targeted three prime areas and made a range of micro-architectural optimizations. They updated most of the processing blocks within the chip to a scheduling pipelines operating on quads. They reduced the frequency of control and state-update operations. They also increased the amount of clock gating in areas including LI caches and completed the bypass blocks.

In general, most graphic processors use floating-point arithmetic for better performance. However, using floating-point arithmetic consumes a lot of power. In Mali-470MP GPUs, ARM prefers using fixed-point arithmetic in places where it does not affect performance. By scrutinizing every milli-watt across the entire SOC, ARM was able to tune the efficiency of Mali-470MP, making it relevant for devices operating with low power budgets, but requiring sophisticated graphics such as wearables, IoT devices and entry-level smartphones.

According to Dan Wilson, Product Manager of ARM, the Mali-470MP is highly power-efficient because it is optimized for the OpenGL ES 2.0 API and its drivers. As most of the devices using Android, Android Wear and Tizen devices use the OpenGL ES API, Mali-470MP can replace the previous generation of GPUs from ARM. Additionally, there is no need to re-optimize the applications for the new GPU.

Just as users are accustomed to vibrant displays and touch interfaces on smartphones, Mali-470MP is expected to bring immersive experiences to wearables, because of its greater power efficiency and support for the OpenGL ES 2.0.

Designers have the freedom of using the multi-core configurable Mali-470MP with both 32- and 64-bit CPUs. These include processors such as the ARM Cortex-A7 and the Cortex-AS3. As IoT devices do not need to address more than 4GB or memory, ARM has designed the new CPU as a 32-bit device. However, Mali-470MP offers optimal energy efficiency when used for screen resolutions up to 640x640p in single-core configurations and up to 1080p for multi-core configurations.

However, the new GPU from ARM is not available in the market yet, and licensees will most likely be able to ship products based on the new Mali-470MP only by the end of 2016.

Devices Running on WiFi Power

Mobile devices are now radically smaller and more powerful than those available in the last decade were. They are also able to tackle more technology-related tasks compared to their erstwhile brethren. However, as their capability grows, they need to consume more power. With the Internet-of-Things and wearable technologies gaining increasing recognition from users, the need to keep them ‘on’ all the time is raising the topic of the best methods to power them.

Imagine that you have multiple sensors embedded around your home, tracking temperature changes by the minute and governing your thermostat to help conserve energy. How nice it would be if all the sensors operated without batteries. For then, you could rest assured that they, in tandem with the thermostat, will be properly monitoring the energy consumption. With battery-operated sensors, you will need to check on the status of each sensor frequently to prevent the system going haywire.

Now, engineers have developed a new communication system that does not require batteries to operate it. Instead, it uses existing Wi-Fi infrastructure and radio frequency signals to provide Internet connectivity to devices. Very soon, your battery-less wristwatch or other wearable devices will be able to communicate directly with other gadgets for storing information about your daily activities on your online profiles.

Earlier research by a group of engineers at the University of Washington had shown that it is possible for low-power devices to run off wireless waves such as those belonging to radio and TV. Their most recent work has taken them a step further. Now these devices, apart from operating without batteries, can send their signals to laptops or smartphones, using only wireless waves to generate the required power.

According to Shyam Gollakota, an assistant professor at the University of Washington, this is an essential step for Internet of Things to really take off. Potentially billions of battery-free devices will need connectivity when embedded in everyday objects. The research can now provide WiFi connectivity to devices and they claim their process consumes several orders of magnitude less power than that typically required for WiFi connectivity.

A tag made by the researchers listens for WiFi signals that a local router exchanges with a laptop or a smartphone. An antenna on the tag selectively reflects or absorbs the signal to encode it. The activity produces tiny changes in the signal strength of the radio waves that other devices can detect and decode.

The method allows central devices such as laptops, tablets and smartphones the ability to communicate with other low-power devices and sensors. The central devices exchange data with sensors that lie within a range of about two meters and do so at the rate of one kilobit per second. For example, a pair of smart socks could relay information about your jog to the jogging app on your phone. Although there is a chance for the radio signals to be buried in noise, the system works because the devices know the specific pattern that they need to look for.

That allows low-power Internet of Things to communicate easily with a large swarm of devices around them because of the prevalence of WiFi.

Are Biometrics Related To The Internet Of Things?

With the Internet of Things or IoT, users and developers can easily augment its functionality, since the IoT is designed to be extensible. Therefore, it is not a far-fetched expectation that the IoT is going to be all over the place and users will get all types of data from it. According to a recent study by the Biometrics Research Group, biometric sensors are being projected as the next big step in providing the necessary security for accessing that data. That is good news for the biometrics industry – by the year 2018, IoT users alone will need nearly 500 million biometric sensors.

As against the normal practice of identification via a username and a password (which can easily be stolen), a biometric sensor identifies a person using unique physiological or behavioral traits, such as his or her fingerprints or his voice. Not only does this save time, the identification method is inherently more secure, making it more valuable. There is nothing like a password or a key to be misplaced, lost or forgotten. The best example of a biometric sensor in use is on Apple devices, with their Touch ID sensor for unlocking the device. In general, such sensors are typically used in security applications and in high-end access controls.

However, the consumer world is slowly making increasing use of biometric sensors, especially after the Fast Identity Online Alliance lent their support for these devices. The Alliance is a conglomeration of some of the biggest names in the technical and financial industry, and their aim is to create a roadmap for using different types of biometric sensors, policies and systems. Most of the use will be similar to the traditional systems, but the sensors will be linked to the Internet.

The Alliance is promoting the use of biometric sensors because of the real security benefits that consumers will get when they use them; the foremost benefit being the inability of losing your access capability. Although you could lose your key, forget your password or misplace your codes, there is only a very slim chance that you will lose your biometric access capability. And, the method is fast and convenient; you will never be locked out of your home or office.

The biometrics method of identification is also more secure than other methods. Even though attackers could cut off the thumb to use its fingerprint, it may not be of much use to them as biometrics can differentiate between living tissue and dead ones. In the same way, it is impossible to completely duplicate the retina pattern of the user’s eye or mimic the voice to fool the biometrics sensor.

With the IoT focus being strong on biometric sensors, the quality and reliability of the sensors is steadily improving. As consumers become increasingly more educated, affiliated technologies are becoming more popular, and that includes wearable devices with biometric sensors. As the popularity grows, so does the response speed of these biometric sensors. Coupled with falling prices, expect the use of biometrics sensors to go up in more and more devices.

How Are Brilliant Machines Created?

The IoT or the Internet of Things has one more feather in its cap. It has now conquered the industrial machine. With GE spearheading the initiative, the new type of industrial machines is aptly named Brilliant Machines.

Although GE is pouring nearly $1.5 billion into the amalgamation of industrial internet and big data, their plan is rather simple. The industrial internet is actually the business version of the Internet of Things. Instead of people being interconnected, here machines talk to each other. GE plans to mix that connectivity with analytics and software so that the entire arrangement becomes very efficient.

GE has started their foray with a battery factory. Covering a work area of nearly 180,000 square feet, the factory is packed with more than 10,000 sensors. Whatever happens within the factory, the sensors keep a track. This includes, for instance, the type of powders that are used to create the ceramics for use in the batteries and the temperatures of the ovens baking these ceramics. They also monitor the air pressure, the time each battery spends inside a particular oven or in a part of the manufacturing line. With smartphones connected via Wi-Fi, employees are able to keep track of all what is going on.

How does all this help GE? Gathering all this data, GE was surprised to find the cause of failure of some of the parts within a battery. The parts failed when they were left in the oven for longer time. Armed with this revelation, GE is able to cut wastage by monitoring how long specific parts stay in the oven.

GE makes investments in several areas. They make gas and steam turbines where over 52 million man-hours per year translate into $7 billion worth of labor cost and all this goes to service over 55,000 turbines. GE manufactures commercial jet aircrafts that take up 205 million man-hours every year. In the world there are over 120,000 diesel electric rail engines made by GE alone that require over 50 million man-hours for annual maintenance – roughly equal to $3 billion in labor cost.

By incorporating sensors within these machines and monitoring them, GE intends to lessen the time and cost of maintaining the various machines they use for power, healthcare, aviation and rail industries. Engineers collect the machine data on their smartphones, run it through visualization software and analytics, making it easier to interpret. The best part is that no engineer has to be near a machine or even onsite to monitor the machines. They can be anywhere on the globe and yet be able to relay accurate instructions to those on the site. The amount of time and costs reduced with the wealth of information available and its analysis is really helping GE.

Brilliant Machines help GE in asset optimization and problem solving, data collection and insights, generating situational awareness and improved collaboration. For instance, for the year 2013, GE earned segmented profits such as $1.2 billion for transportation, $3.0 billion for healthcare, $4.3 billion for aviation, $2.2 billion for oil and gas, and nearly $5 billion for power and water – that is, a total profit of $15.7 billion.